This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of Beran p. 98. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normsub.1 | ⊢ 𝐴 ∈ ℋ | |
| normsub.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | normpythi | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) = ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normsub.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | normsub.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1 2 1 2 | normlem8 | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) |
| 4 | id | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( 𝐴 ·ih 𝐵 ) = 0 ) | |
| 5 | orthcom | ⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℋ ) → ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) ) | |
| 6 | 1 2 5 | mp2an | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 ↔ ( 𝐵 ·ih 𝐴 ) = 0 ) |
| 7 | 6 | biimpi | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( 𝐵 ·ih 𝐴 ) = 0 ) |
| 8 | 4 7 | oveq12d | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) = ( 0 + 0 ) ) |
| 9 | 00id | ⊢ ( 0 + 0 ) = 0 | |
| 10 | 8 9 | eqtrdi | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) = 0 ) |
| 11 | 10 | oveq2d | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + 0 ) ) |
| 12 | 1 1 | hicli | ⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℂ |
| 13 | 2 2 | hicli | ⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℂ |
| 14 | 12 13 | addcli | ⊢ ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ |
| 15 | 14 | addridi | ⊢ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + 0 ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) |
| 16 | 11 15 | eqtrdi | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 17 | 3 16 | eqtrid | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ) |
| 18 | 1 2 | hvaddcli | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ |
| 19 | 18 | normsqi | ⊢ ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) = ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) |
| 20 | 1 | normsqi | ⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) |
| 21 | 2 | normsqi | ⊢ ( ( normℎ ‘ 𝐵 ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 ) |
| 22 | 20 21 | oveq12i | ⊢ ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) |
| 23 | 17 19 22 | 3eqtr4g | ⊢ ( ( 𝐴 ·ih 𝐵 ) = 0 → ( ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ↑ 2 ) = ( ( ( normℎ ‘ 𝐴 ) ↑ 2 ) + ( ( normℎ ‘ 𝐵 ) ↑ 2 ) ) ) |