This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The square of a norm. (Contributed by NM, 21-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | normcl.1 | ⊢ 𝐴 ∈ ℋ | |
| Assertion | normsqi | ⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normcl.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | normval | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) | |
| 3 | 1 2 | ax-mp | ⊢ ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) |
| 4 | 3 | oveq1i | ⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) |
| 5 | hiidge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) | |
| 6 | 1 5 | ax-mp | ⊢ 0 ≤ ( 𝐴 ·ih 𝐴 ) |
| 7 | hiidrcl | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) | |
| 8 | 1 7 | ax-mp | ⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℝ |
| 9 | 8 | sqsqrti | ⊢ ( 0 ≤ ( 𝐴 ·ih 𝐴 ) → ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) |
| 10 | 6 9 | ax-mp | ⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) |
| 11 | 4 10 | eqtri | ⊢ ( ( normℎ ‘ 𝐴 ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) |