This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Analogy to Pythagorean theorem for orthogonal vectors. Remark 3.4(C) of Beran p. 98. (Contributed by NM, 17-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normsub.1 | |- A e. ~H |
|
| normsub.2 | |- B e. ~H |
||
| Assertion | normpythi | |- ( ( A .ih B ) = 0 -> ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normsub.1 | |- A e. ~H |
|
| 2 | normsub.2 | |- B e. ~H |
|
| 3 | 1 2 1 2 | normlem8 | |- ( ( A +h B ) .ih ( A +h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) |
| 4 | id | |- ( ( A .ih B ) = 0 -> ( A .ih B ) = 0 ) |
|
| 5 | orthcom | |- ( ( A e. ~H /\ B e. ~H ) -> ( ( A .ih B ) = 0 <-> ( B .ih A ) = 0 ) ) |
|
| 6 | 1 2 5 | mp2an | |- ( ( A .ih B ) = 0 <-> ( B .ih A ) = 0 ) |
| 7 | 6 | biimpi | |- ( ( A .ih B ) = 0 -> ( B .ih A ) = 0 ) |
| 8 | 4 7 | oveq12d | |- ( ( A .ih B ) = 0 -> ( ( A .ih B ) + ( B .ih A ) ) = ( 0 + 0 ) ) |
| 9 | 00id | |- ( 0 + 0 ) = 0 |
|
| 10 | 8 9 | eqtrdi | |- ( ( A .ih B ) = 0 -> ( ( A .ih B ) + ( B .ih A ) ) = 0 ) |
| 11 | 10 | oveq2d | |- ( ( A .ih B ) = 0 -> ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + 0 ) ) |
| 12 | 1 1 | hicli | |- ( A .ih A ) e. CC |
| 13 | 2 2 | hicli | |- ( B .ih B ) e. CC |
| 14 | 12 13 | addcli | |- ( ( A .ih A ) + ( B .ih B ) ) e. CC |
| 15 | 14 | addridi | |- ( ( ( A .ih A ) + ( B .ih B ) ) + 0 ) = ( ( A .ih A ) + ( B .ih B ) ) |
| 16 | 11 15 | eqtrdi | |- ( ( A .ih B ) = 0 -> ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) = ( ( A .ih A ) + ( B .ih B ) ) ) |
| 17 | 3 16 | eqtrid | |- ( ( A .ih B ) = 0 -> ( ( A +h B ) .ih ( A +h B ) ) = ( ( A .ih A ) + ( B .ih B ) ) ) |
| 18 | 1 2 | hvaddcli | |- ( A +h B ) e. ~H |
| 19 | 18 | normsqi | |- ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( A +h B ) .ih ( A +h B ) ) |
| 20 | 1 | normsqi | |- ( ( normh ` A ) ^ 2 ) = ( A .ih A ) |
| 21 | 2 | normsqi | |- ( ( normh ` B ) ^ 2 ) = ( B .ih B ) |
| 22 | 20 21 | oveq12i | |- ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) = ( ( A .ih A ) + ( B .ih B ) ) |
| 23 | 17 19 22 | 3eqtr4g | |- ( ( A .ih B ) = 0 -> ( ( normh ` ( A +h B ) ) ^ 2 ) = ( ( ( normh ` A ) ^ 2 ) + ( ( normh ` B ) ^ 2 ) ) ) |