This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for norms. Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | norm-ii.1 | ⊢ 𝐴 ∈ ℋ | |
| norm-ii.2 | ⊢ 𝐵 ∈ ℋ | ||
| Assertion | norm-ii-i | ⊢ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) + ( normℎ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm-ii.1 | ⊢ 𝐴 ∈ ℋ | |
| 2 | norm-ii.2 | ⊢ 𝐵 ∈ ℋ | |
| 3 | 1re | ⊢ 1 ∈ ℝ | |
| 4 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 5 | 4 | cjrebi | ⊢ ( 1 ∈ ℝ ↔ ( ∗ ‘ 1 ) = 1 ) |
| 6 | 3 5 | mpbi | ⊢ ( ∗ ‘ 1 ) = 1 |
| 7 | 6 | oveq1i | ⊢ ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) = ( 1 · ( 𝐵 ·ih 𝐴 ) ) |
| 8 | 2 1 | hicli | ⊢ ( 𝐵 ·ih 𝐴 ) ∈ ℂ |
| 9 | 8 | mullidi | ⊢ ( 1 · ( 𝐵 ·ih 𝐴 ) ) = ( 𝐵 ·ih 𝐴 ) |
| 10 | 7 9 | eqtri | ⊢ ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) = ( 𝐵 ·ih 𝐴 ) |
| 11 | 1 2 | hicli | ⊢ ( 𝐴 ·ih 𝐵 ) ∈ ℂ |
| 12 | 11 | mullidi | ⊢ ( 1 · ( 𝐴 ·ih 𝐵 ) ) = ( 𝐴 ·ih 𝐵 ) |
| 13 | 10 12 | oveq12i | ⊢ ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) |
| 14 | abs1 | ⊢ ( abs ‘ 1 ) = 1 | |
| 15 | 4 2 1 14 | normlem7 | ⊢ ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 16 | 13 15 | eqbrtrri | ⊢ ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 17 | eqid | ⊢ - ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) = - ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) | |
| 18 | 4 2 1 17 | normlem2 | ⊢ - ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ |
| 19 | 4 | cjcli | ⊢ ( ∗ ‘ 1 ) ∈ ℂ |
| 20 | 19 8 | mulcli | ⊢ ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) ∈ ℂ |
| 21 | 4 11 | mulcli | ⊢ ( 1 · ( 𝐴 ·ih 𝐵 ) ) ∈ ℂ |
| 22 | 20 21 | addcli | ⊢ ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℂ |
| 23 | 22 | negrebi | ⊢ ( - ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ ↔ ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ ) |
| 24 | 18 23 | mpbi | ⊢ ( ( ( ∗ ‘ 1 ) · ( 𝐵 ·ih 𝐴 ) ) + ( 1 · ( 𝐴 ·ih 𝐵 ) ) ) ∈ ℝ |
| 25 | 13 24 | eqeltrri | ⊢ ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ∈ ℝ |
| 26 | 2re | ⊢ 2 ∈ ℝ | |
| 27 | hiidge0 | ⊢ ( 𝐴 ∈ ℋ → 0 ≤ ( 𝐴 ·ih 𝐴 ) ) | |
| 28 | 1 27 | ax-mp | ⊢ 0 ≤ ( 𝐴 ·ih 𝐴 ) |
| 29 | hiidrcl | ⊢ ( 𝐴 ∈ ℋ → ( 𝐴 ·ih 𝐴 ) ∈ ℝ ) | |
| 30 | 1 29 | ax-mp | ⊢ ( 𝐴 ·ih 𝐴 ) ∈ ℝ |
| 31 | 30 | sqrtcli | ⊢ ( 0 ≤ ( 𝐴 ·ih 𝐴 ) → ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ ) |
| 32 | 28 31 | ax-mp | ⊢ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℝ |
| 33 | hiidge0 | ⊢ ( 𝐵 ∈ ℋ → 0 ≤ ( 𝐵 ·ih 𝐵 ) ) | |
| 34 | 2 33 | ax-mp | ⊢ 0 ≤ ( 𝐵 ·ih 𝐵 ) |
| 35 | hiidrcl | ⊢ ( 𝐵 ∈ ℋ → ( 𝐵 ·ih 𝐵 ) ∈ ℝ ) | |
| 36 | 2 35 | ax-mp | ⊢ ( 𝐵 ·ih 𝐵 ) ∈ ℝ |
| 37 | 36 | sqrtcli | ⊢ ( 0 ≤ ( 𝐵 ·ih 𝐵 ) → ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ∈ ℝ ) |
| 38 | 34 37 | ax-mp | ⊢ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ∈ ℝ |
| 39 | 32 38 | remulcli | ⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ∈ ℝ |
| 40 | 26 39 | remulcli | ⊢ ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ∈ ℝ |
| 41 | 30 36 | readdcli | ⊢ ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) ∈ ℝ |
| 42 | 25 40 41 | leadd2i | ⊢ ( ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ↔ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) ) |
| 43 | 16 42 | mpbi | ⊢ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ) ≤ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) |
| 44 | 1 2 1 2 | normlem8 | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) |
| 45 | 11 8 | addcomi | ⊢ ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) = ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) |
| 46 | 45 | oveq2i | ⊢ ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐴 ·ih 𝐵 ) + ( 𝐵 ·ih 𝐴 ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ) |
| 47 | 44 46 | eqtri | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( ( 𝐵 ·ih 𝐴 ) + ( 𝐴 ·ih 𝐵 ) ) ) |
| 48 | 32 | recni | ⊢ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∈ ℂ |
| 49 | 38 | recni | ⊢ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ∈ ℂ |
| 50 | 48 49 | binom2i | ⊢ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) = ( ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) + ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ) |
| 51 | 48 | sqcli | ⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) ∈ ℂ |
| 52 | 2cn | ⊢ 2 ∈ ℂ | |
| 53 | 48 49 | mulcli | ⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ∈ ℂ |
| 54 | 52 53 | mulcli | ⊢ ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ∈ ℂ |
| 55 | 49 | sqcli | ⊢ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ∈ ℂ |
| 56 | 51 54 55 | add32i | ⊢ ( ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) + ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ) = ( ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) + ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) |
| 57 | 30 | sqsqrti | ⊢ ( 0 ≤ ( 𝐴 ·ih 𝐴 ) → ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) ) |
| 58 | 28 57 | ax-mp | ⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) = ( 𝐴 ·ih 𝐴 ) |
| 59 | 36 | sqsqrti | ⊢ ( 0 ≤ ( 𝐵 ·ih 𝐵 ) → ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 ) ) |
| 60 | 34 59 | ax-mp | ⊢ ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) = ( 𝐵 ·ih 𝐵 ) |
| 61 | 58 60 | oveq12i | ⊢ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) + ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ) = ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) |
| 62 | 61 | oveq1i | ⊢ ( ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ↑ 2 ) + ( ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ↑ 2 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) |
| 63 | 50 56 62 | 3eqtri | ⊢ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) = ( ( ( 𝐴 ·ih 𝐴 ) + ( 𝐵 ·ih 𝐵 ) ) + ( 2 · ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) · ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) ) |
| 64 | 43 47 63 | 3brtr4i | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ≤ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) |
| 65 | 1 2 | hvaddcli | ⊢ ( 𝐴 +ℎ 𝐵 ) ∈ ℋ |
| 66 | hiidge0 | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → 0 ≤ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) | |
| 67 | 65 66 | ax-mp | ⊢ 0 ≤ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) |
| 68 | 32 38 | readdcli | ⊢ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ∈ ℝ |
| 69 | 68 | sqge0i | ⊢ 0 ≤ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) |
| 70 | hiidrcl | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ∈ ℝ ) | |
| 71 | 65 70 | ax-mp | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ∈ ℝ |
| 72 | 68 | resqcli | ⊢ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ∈ ℝ |
| 73 | 71 72 | sqrtlei | ⊢ ( ( 0 ≤ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ∧ 0 ≤ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) → ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ≤ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ↔ ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) ≤ ( √ ‘ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) ) ) |
| 74 | 67 69 73 | mp2an | ⊢ ( ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ≤ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ↔ ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) ≤ ( √ ‘ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) ) |
| 75 | 64 74 | mpbi | ⊢ ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) ≤ ( √ ‘ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) |
| 76 | 30 | sqrtge0i | ⊢ ( 0 ≤ ( 𝐴 ·ih 𝐴 ) → 0 ≤ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) |
| 77 | 28 76 | ax-mp | ⊢ 0 ≤ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) |
| 78 | 36 | sqrtge0i | ⊢ ( 0 ≤ ( 𝐵 ·ih 𝐵 ) → 0 ≤ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 79 | 34 78 | ax-mp | ⊢ 0 ≤ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) |
| 80 | 32 38 | addge0i | ⊢ ( ( 0 ≤ ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ∧ 0 ≤ ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) → 0 ≤ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 81 | 77 79 80 | mp2an | ⊢ 0 ≤ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 82 | 68 | sqrtsqi | ⊢ ( 0 ≤ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) → ( √ ‘ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) = ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ) |
| 83 | 81 82 | ax-mp | ⊢ ( √ ‘ ( ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) ↑ 2 ) ) = ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 84 | 75 83 | breqtri | ⊢ ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) ≤ ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 85 | normval | ⊢ ( ( 𝐴 +ℎ 𝐵 ) ∈ ℋ → ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) ) | |
| 86 | 65 85 | ax-mp | ⊢ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) = ( √ ‘ ( ( 𝐴 +ℎ 𝐵 ) ·ih ( 𝐴 +ℎ 𝐵 ) ) ) |
| 87 | normval | ⊢ ( 𝐴 ∈ ℋ → ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) ) | |
| 88 | 1 87 | ax-mp | ⊢ ( normℎ ‘ 𝐴 ) = ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) |
| 89 | normval | ⊢ ( 𝐵 ∈ ℋ → ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) | |
| 90 | 2 89 | ax-mp | ⊢ ( normℎ ‘ 𝐵 ) = ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) |
| 91 | 88 90 | oveq12i | ⊢ ( ( normℎ ‘ 𝐴 ) + ( normℎ ‘ 𝐵 ) ) = ( ( √ ‘ ( 𝐴 ·ih 𝐴 ) ) + ( √ ‘ ( 𝐵 ·ih 𝐵 ) ) ) |
| 92 | 84 86 91 | 3brtr4i | ⊢ ( normℎ ‘ ( 𝐴 +ℎ 𝐵 ) ) ≤ ( ( normℎ ‘ 𝐴 ) + ( normℎ ‘ 𝐵 ) ) |