This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for norms. Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | norm-ii.1 | |- A e. ~H |
|
| norm-ii.2 | |- B e. ~H |
||
| Assertion | norm-ii-i | |- ( normh ` ( A +h B ) ) <_ ( ( normh ` A ) + ( normh ` B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | norm-ii.1 | |- A e. ~H |
|
| 2 | norm-ii.2 | |- B e. ~H |
|
| 3 | 1re | |- 1 e. RR |
|
| 4 | ax-1cn | |- 1 e. CC |
|
| 5 | 4 | cjrebi | |- ( 1 e. RR <-> ( * ` 1 ) = 1 ) |
| 6 | 3 5 | mpbi | |- ( * ` 1 ) = 1 |
| 7 | 6 | oveq1i | |- ( ( * ` 1 ) x. ( B .ih A ) ) = ( 1 x. ( B .ih A ) ) |
| 8 | 2 1 | hicli | |- ( B .ih A ) e. CC |
| 9 | 8 | mullidi | |- ( 1 x. ( B .ih A ) ) = ( B .ih A ) |
| 10 | 7 9 | eqtri | |- ( ( * ` 1 ) x. ( B .ih A ) ) = ( B .ih A ) |
| 11 | 1 2 | hicli | |- ( A .ih B ) e. CC |
| 12 | 11 | mullidi | |- ( 1 x. ( A .ih B ) ) = ( A .ih B ) |
| 13 | 10 12 | oveq12i | |- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) = ( ( B .ih A ) + ( A .ih B ) ) |
| 14 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 15 | 4 2 1 14 | normlem7 | |- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) <_ ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) |
| 16 | 13 15 | eqbrtrri | |- ( ( B .ih A ) + ( A .ih B ) ) <_ ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) |
| 17 | eqid | |- -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) = -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) |
|
| 18 | 4 2 1 17 | normlem2 | |- -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR |
| 19 | 4 | cjcli | |- ( * ` 1 ) e. CC |
| 20 | 19 8 | mulcli | |- ( ( * ` 1 ) x. ( B .ih A ) ) e. CC |
| 21 | 4 11 | mulcli | |- ( 1 x. ( A .ih B ) ) e. CC |
| 22 | 20 21 | addcli | |- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. CC |
| 23 | 22 | negrebi | |- ( -u ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR <-> ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR ) |
| 24 | 18 23 | mpbi | |- ( ( ( * ` 1 ) x. ( B .ih A ) ) + ( 1 x. ( A .ih B ) ) ) e. RR |
| 25 | 13 24 | eqeltrri | |- ( ( B .ih A ) + ( A .ih B ) ) e. RR |
| 26 | 2re | |- 2 e. RR |
|
| 27 | hiidge0 | |- ( A e. ~H -> 0 <_ ( A .ih A ) ) |
|
| 28 | 1 27 | ax-mp | |- 0 <_ ( A .ih A ) |
| 29 | hiidrcl | |- ( A e. ~H -> ( A .ih A ) e. RR ) |
|
| 30 | 1 29 | ax-mp | |- ( A .ih A ) e. RR |
| 31 | 30 | sqrtcli | |- ( 0 <_ ( A .ih A ) -> ( sqrt ` ( A .ih A ) ) e. RR ) |
| 32 | 28 31 | ax-mp | |- ( sqrt ` ( A .ih A ) ) e. RR |
| 33 | hiidge0 | |- ( B e. ~H -> 0 <_ ( B .ih B ) ) |
|
| 34 | 2 33 | ax-mp | |- 0 <_ ( B .ih B ) |
| 35 | hiidrcl | |- ( B e. ~H -> ( B .ih B ) e. RR ) |
|
| 36 | 2 35 | ax-mp | |- ( B .ih B ) e. RR |
| 37 | 36 | sqrtcli | |- ( 0 <_ ( B .ih B ) -> ( sqrt ` ( B .ih B ) ) e. RR ) |
| 38 | 34 37 | ax-mp | |- ( sqrt ` ( B .ih B ) ) e. RR |
| 39 | 32 38 | remulcli | |- ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) e. RR |
| 40 | 26 39 | remulcli | |- ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) e. RR |
| 41 | 30 36 | readdcli | |- ( ( A .ih A ) + ( B .ih B ) ) e. RR |
| 42 | 25 40 41 | leadd2i | |- ( ( ( B .ih A ) + ( A .ih B ) ) <_ ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) <-> ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) <_ ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) ) |
| 43 | 16 42 | mpbi | |- ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) <_ ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
| 44 | 1 2 1 2 | normlem8 | |- ( ( A +h B ) .ih ( A +h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) |
| 45 | 11 8 | addcomi | |- ( ( A .ih B ) + ( B .ih A ) ) = ( ( B .ih A ) + ( A .ih B ) ) |
| 46 | 45 | oveq2i | |- ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( A .ih B ) + ( B .ih A ) ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) |
| 47 | 44 46 | eqtri | |- ( ( A +h B ) .ih ( A +h B ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( ( B .ih A ) + ( A .ih B ) ) ) |
| 48 | 32 | recni | |- ( sqrt ` ( A .ih A ) ) e. CC |
| 49 | 38 | recni | |- ( sqrt ` ( B .ih B ) ) e. CC |
| 50 | 48 49 | binom2i | |- ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) = ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) |
| 51 | 48 | sqcli | |- ( ( sqrt ` ( A .ih A ) ) ^ 2 ) e. CC |
| 52 | 2cn | |- 2 e. CC |
|
| 53 | 48 49 | mulcli | |- ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) e. CC |
| 54 | 52 53 | mulcli | |- ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) e. CC |
| 55 | 49 | sqcli | |- ( ( sqrt ` ( B .ih B ) ) ^ 2 ) e. CC |
| 56 | 51 54 55 | add32i | |- ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) = ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
| 57 | 30 | sqsqrti | |- ( 0 <_ ( A .ih A ) -> ( ( sqrt ` ( A .ih A ) ) ^ 2 ) = ( A .ih A ) ) |
| 58 | 28 57 | ax-mp | |- ( ( sqrt ` ( A .ih A ) ) ^ 2 ) = ( A .ih A ) |
| 59 | 36 | sqsqrti | |- ( 0 <_ ( B .ih B ) -> ( ( sqrt ` ( B .ih B ) ) ^ 2 ) = ( B .ih B ) ) |
| 60 | 34 59 | ax-mp | |- ( ( sqrt ` ( B .ih B ) ) ^ 2 ) = ( B .ih B ) |
| 61 | 58 60 | oveq12i | |- ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) = ( ( A .ih A ) + ( B .ih B ) ) |
| 62 | 61 | oveq1i | |- ( ( ( ( sqrt ` ( A .ih A ) ) ^ 2 ) + ( ( sqrt ` ( B .ih B ) ) ^ 2 ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
| 63 | 50 56 62 | 3eqtri | |- ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) = ( ( ( A .ih A ) + ( B .ih B ) ) + ( 2 x. ( ( sqrt ` ( A .ih A ) ) x. ( sqrt ` ( B .ih B ) ) ) ) ) |
| 64 | 43 47 63 | 3brtr4i | |- ( ( A +h B ) .ih ( A +h B ) ) <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) |
| 65 | 1 2 | hvaddcli | |- ( A +h B ) e. ~H |
| 66 | hiidge0 | |- ( ( A +h B ) e. ~H -> 0 <_ ( ( A +h B ) .ih ( A +h B ) ) ) |
|
| 67 | 65 66 | ax-mp | |- 0 <_ ( ( A +h B ) .ih ( A +h B ) ) |
| 68 | 32 38 | readdcli | |- ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) e. RR |
| 69 | 68 | sqge0i | |- 0 <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) |
| 70 | hiidrcl | |- ( ( A +h B ) e. ~H -> ( ( A +h B ) .ih ( A +h B ) ) e. RR ) |
|
| 71 | 65 70 | ax-mp | |- ( ( A +h B ) .ih ( A +h B ) ) e. RR |
| 72 | 68 | resqcli | |- ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) e. RR |
| 73 | 71 72 | sqrtlei | |- ( ( 0 <_ ( ( A +h B ) .ih ( A +h B ) ) /\ 0 <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) -> ( ( ( A +h B ) .ih ( A +h B ) ) <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) <-> ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) ) ) |
| 74 | 67 69 73 | mp2an | |- ( ( ( A +h B ) .ih ( A +h B ) ) <_ ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) <-> ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) ) |
| 75 | 64 74 | mpbi | |- ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) |
| 76 | 30 | sqrtge0i | |- ( 0 <_ ( A .ih A ) -> 0 <_ ( sqrt ` ( A .ih A ) ) ) |
| 77 | 28 76 | ax-mp | |- 0 <_ ( sqrt ` ( A .ih A ) ) |
| 78 | 36 | sqrtge0i | |- ( 0 <_ ( B .ih B ) -> 0 <_ ( sqrt ` ( B .ih B ) ) ) |
| 79 | 34 78 | ax-mp | |- 0 <_ ( sqrt ` ( B .ih B ) ) |
| 80 | 32 38 | addge0i | |- ( ( 0 <_ ( sqrt ` ( A .ih A ) ) /\ 0 <_ ( sqrt ` ( B .ih B ) ) ) -> 0 <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ) |
| 81 | 77 79 80 | mp2an | |- 0 <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
| 82 | 68 | sqrtsqi | |- ( 0 <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) -> ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) = ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ) |
| 83 | 81 82 | ax-mp | |- ( sqrt ` ( ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) ^ 2 ) ) = ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
| 84 | 75 83 | breqtri | |- ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) <_ ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
| 85 | normval | |- ( ( A +h B ) e. ~H -> ( normh ` ( A +h B ) ) = ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) ) |
|
| 86 | 65 85 | ax-mp | |- ( normh ` ( A +h B ) ) = ( sqrt ` ( ( A +h B ) .ih ( A +h B ) ) ) |
| 87 | normval | |- ( A e. ~H -> ( normh ` A ) = ( sqrt ` ( A .ih A ) ) ) |
|
| 88 | 1 87 | ax-mp | |- ( normh ` A ) = ( sqrt ` ( A .ih A ) ) |
| 89 | normval | |- ( B e. ~H -> ( normh ` B ) = ( sqrt ` ( B .ih B ) ) ) |
|
| 90 | 2 89 | ax-mp | |- ( normh ` B ) = ( sqrt ` ( B .ih B ) ) |
| 91 | 88 90 | oveq12i | |- ( ( normh ` A ) + ( normh ` B ) ) = ( ( sqrt ` ( A .ih A ) ) + ( sqrt ` ( B .ih B ) ) ) |
| 92 | 84 86 91 | 3brtr4i | |- ( normh ` ( A +h B ) ) <_ ( ( normh ` A ) + ( normh ` B ) ) |