This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 27-Jul-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ | ||
| normlem1.3 | ⊢ 𝐺 ∈ ℋ | ||
| normlem2.4 | ⊢ 𝐵 = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) | ||
| Assertion | normlem2 | ⊢ 𝐵 ∈ ℝ |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| 2 | normlem1.2 | ⊢ 𝐹 ∈ ℋ | |
| 3 | normlem1.3 | ⊢ 𝐺 ∈ ℋ | |
| 4 | normlem2.4 | ⊢ 𝐵 = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) | |
| 5 | 1 | cjcli | ⊢ ( ∗ ‘ 𝑆 ) ∈ ℂ |
| 6 | 2 3 | hicli | ⊢ ( 𝐹 ·ih 𝐺 ) ∈ ℂ |
| 7 | 5 6 | mulcli | ⊢ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ∈ ℂ |
| 8 | 3 2 | hicli | ⊢ ( 𝐺 ·ih 𝐹 ) ∈ ℂ |
| 9 | 1 8 | mulcli | ⊢ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ∈ ℂ |
| 10 | 7 9 | cjaddi | ⊢ ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ∗ ‘ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
| 11 | 1 | cjcji | ⊢ ( ∗ ‘ ( ∗ ‘ 𝑆 ) ) = 𝑆 |
| 12 | 11 | eqcomi | ⊢ 𝑆 = ( ∗ ‘ ( ∗ ‘ 𝑆 ) ) |
| 13 | 3 2 | his1i | ⊢ ( 𝐺 ·ih 𝐹 ) = ( ∗ ‘ ( 𝐹 ·ih 𝐺 ) ) |
| 14 | 12 13 | oveq12i | ⊢ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝑆 ) ) · ( ∗ ‘ ( 𝐹 ·ih 𝐺 ) ) ) |
| 15 | 5 6 | cjmuli | ⊢ ( ∗ ‘ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) = ( ( ∗ ‘ ( ∗ ‘ 𝑆 ) ) · ( ∗ ‘ ( 𝐹 ·ih 𝐺 ) ) ) |
| 16 | 14 15 | eqtr4i | ⊢ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) = ( ∗ ‘ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) |
| 17 | 2 3 | his1i | ⊢ ( 𝐹 ·ih 𝐺 ) = ( ∗ ‘ ( 𝐺 ·ih 𝐹 ) ) |
| 18 | 17 | oveq2i | ⊢ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) = ( ( ∗ ‘ 𝑆 ) · ( ∗ ‘ ( 𝐺 ·ih 𝐹 ) ) ) |
| 19 | 1 8 | cjmuli | ⊢ ( ∗ ‘ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) = ( ( ∗ ‘ 𝑆 ) · ( ∗ ‘ ( 𝐺 ·ih 𝐹 ) ) ) |
| 20 | 18 19 | eqtr4i | ⊢ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) = ( ∗ ‘ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) |
| 21 | 16 20 | oveq12i | ⊢ ( ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) = ( ( ∗ ‘ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) + ( ∗ ‘ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
| 22 | 10 21 | eqtr4i | ⊢ ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) = ( ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) |
| 23 | 7 9 | addcomi | ⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) = ( ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) + ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ) |
| 24 | 22 23 | eqtr4i | ⊢ ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) = ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) |
| 25 | 7 9 | addcli | ⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℂ |
| 26 | 25 | cjrebi | ⊢ ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ ↔ ( ∗ ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) = ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
| 27 | 24 26 | mpbir | ⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ |
| 28 | 27 | renegcli | ⊢ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ |
| 29 | 4 28 | eqeltri | ⊢ 𝐵 ∈ ℝ |