This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used to derive properties of norm. Part of Theorem 3.3(ii) of Beran p. 97. (Contributed by NM, 11-Aug-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| normlem1.2 | ⊢ 𝐹 ∈ ℋ | ||
| normlem1.3 | ⊢ 𝐺 ∈ ℋ | ||
| normlem7.4 | ⊢ ( abs ‘ 𝑆 ) = 1 | ||
| Assertion | normlem7 | ⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | normlem1.1 | ⊢ 𝑆 ∈ ℂ | |
| 2 | normlem1.2 | ⊢ 𝐹 ∈ ℋ | |
| 3 | normlem1.3 | ⊢ 𝐺 ∈ ℋ | |
| 4 | normlem7.4 | ⊢ ( abs ‘ 𝑆 ) = 1 | |
| 5 | eqid | ⊢ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) = - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) | |
| 6 | 1 2 3 5 | normlem2 | ⊢ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ |
| 7 | 1 | cjcli | ⊢ ( ∗ ‘ 𝑆 ) ∈ ℂ |
| 8 | 2 3 | hicli | ⊢ ( 𝐹 ·ih 𝐺 ) ∈ ℂ |
| 9 | 7 8 | mulcli | ⊢ ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) ∈ ℂ |
| 10 | 3 2 | hicli | ⊢ ( 𝐺 ·ih 𝐹 ) ∈ ℂ |
| 11 | 1 10 | mulcli | ⊢ ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ∈ ℂ |
| 12 | 9 11 | addcli | ⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℂ |
| 13 | 12 | negrebi | ⊢ ( - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ ↔ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ ) |
| 14 | 6 13 | mpbi | ⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℝ |
| 15 | 14 | leabsi | ⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( abs ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
| 16 | 12 | absnegi | ⊢ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) = ( abs ‘ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
| 17 | 15 16 | breqtrri | ⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) |
| 18 | eqid | ⊢ ( 𝐺 ·ih 𝐺 ) = ( 𝐺 ·ih 𝐺 ) | |
| 19 | eqid | ⊢ ( 𝐹 ·ih 𝐹 ) = ( 𝐹 ·ih 𝐹 ) | |
| 20 | 1 2 3 5 18 19 4 | normlem6 | ⊢ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) |
| 21 | 12 | negcli | ⊢ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ∈ ℂ |
| 22 | 21 | abscli | ⊢ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ∈ ℝ |
| 23 | 2re | ⊢ 2 ∈ ℝ | |
| 24 | hiidge0 | ⊢ ( 𝐺 ∈ ℋ → 0 ≤ ( 𝐺 ·ih 𝐺 ) ) | |
| 25 | hiidrcl | ⊢ ( 𝐺 ∈ ℋ → ( 𝐺 ·ih 𝐺 ) ∈ ℝ ) | |
| 26 | 3 25 | ax-mp | ⊢ ( 𝐺 ·ih 𝐺 ) ∈ ℝ |
| 27 | 26 | sqrtcli | ⊢ ( 0 ≤ ( 𝐺 ·ih 𝐺 ) → ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) ∈ ℝ ) |
| 28 | 3 24 27 | mp2b | ⊢ ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) ∈ ℝ |
| 29 | hiidge0 | ⊢ ( 𝐹 ∈ ℋ → 0 ≤ ( 𝐹 ·ih 𝐹 ) ) | |
| 30 | hiidrcl | ⊢ ( 𝐹 ∈ ℋ → ( 𝐹 ·ih 𝐹 ) ∈ ℝ ) | |
| 31 | 2 30 | ax-mp | ⊢ ( 𝐹 ·ih 𝐹 ) ∈ ℝ |
| 32 | 31 | sqrtcli | ⊢ ( 0 ≤ ( 𝐹 ·ih 𝐹 ) → ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ∈ ℝ ) |
| 33 | 2 29 32 | mp2b | ⊢ ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ∈ ℝ |
| 34 | 28 33 | remulcli | ⊢ ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ∈ ℝ |
| 35 | 23 34 | remulcli | ⊢ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) ∈ ℝ |
| 36 | 14 22 35 | letri | ⊢ ( ( ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ∧ ( abs ‘ - ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) ) → ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) ) |
| 37 | 17 20 36 | mp2an | ⊢ ( ( ( ∗ ‘ 𝑆 ) · ( 𝐹 ·ih 𝐺 ) ) + ( 𝑆 · ( 𝐺 ·ih 𝐹 ) ) ) ≤ ( 2 · ( ( √ ‘ ( 𝐺 ·ih 𝐺 ) ) · ( √ ‘ ( 𝐹 ·ih 𝐹 ) ) ) ) |