This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The product of two positive reals is positive. Axiom 21 of 22 for real and complex numbers, justified by Theorem axpre-mulgt0 . Normally new proofs would use axmulgt0 . (New usage is discouraged.) (Contributed by NM, 13-Oct-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ax-pre-mulgt0 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 ) → 0 <ℝ ( 𝐴 · 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 0 | cA | ⊢ 𝐴 | |
| 1 | cr | ⊢ ℝ | |
| 2 | 0 1 | wcel | ⊢ 𝐴 ∈ ℝ |
| 3 | cB | ⊢ 𝐵 | |
| 4 | 3 1 | wcel | ⊢ 𝐵 ∈ ℝ |
| 5 | 2 4 | wa | ⊢ ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) |
| 6 | cc0 | ⊢ 0 | |
| 7 | cltrr | ⊢ <ℝ | |
| 8 | 6 0 7 | wbr | ⊢ 0 <ℝ 𝐴 |
| 9 | 6 3 7 | wbr | ⊢ 0 <ℝ 𝐵 |
| 10 | 8 9 | wa | ⊢ ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 ) |
| 11 | cmul | ⊢ · | |
| 12 | 0 3 11 | co | ⊢ ( 𝐴 · 𝐵 ) |
| 13 | 6 12 7 | wbr | ⊢ 0 <ℝ ( 𝐴 · 𝐵 ) |
| 14 | 10 13 | wi | ⊢ ( ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 ) → 0 <ℝ ( 𝐴 · 𝐵 ) ) |
| 15 | 5 14 | wi | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 0 <ℝ 𝐴 ∧ 0 <ℝ 𝐵 ) → 0 <ℝ ( 𝐴 · 𝐵 ) ) ) |