This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Strong Mathematical Induction for positive integers (inference schema). (Contributed by NM, 17-Aug-2001)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | indstr.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| indstr.2 | ⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) | ||
| Assertion | indstr | ⊢ ( 𝑥 ∈ ℕ → 𝜑 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | indstr.1 | ⊢ ( 𝑥 = 𝑦 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | indstr.2 | ⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) → 𝜑 ) ) | |
| 3 | pm3.24 | ⊢ ¬ ( 𝜑 ∧ ¬ 𝜑 ) | |
| 4 | nnre | ⊢ ( 𝑥 ∈ ℕ → 𝑥 ∈ ℝ ) | |
| 5 | nnre | ⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℝ ) | |
| 6 | lenlt | ⊢ ( ( 𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) | |
| 7 | 4 5 6 | syl2an | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( 𝑥 ≤ 𝑦 ↔ ¬ 𝑦 < 𝑥 ) ) |
| 8 | 7 | imbi2d | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ↔ ( ¬ 𝜓 → ¬ 𝑦 < 𝑥 ) ) ) |
| 9 | con34b | ⊢ ( ( 𝑦 < 𝑥 → 𝜓 ) ↔ ( ¬ 𝜓 → ¬ 𝑦 < 𝑥 ) ) | |
| 10 | 8 9 | bitr4di | ⊢ ( ( 𝑥 ∈ ℕ ∧ 𝑦 ∈ ℕ ) → ( ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ↔ ( 𝑦 < 𝑥 → 𝜓 ) ) ) |
| 11 | 10 | ralbidva | ⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ↔ ∀ 𝑦 ∈ ℕ ( 𝑦 < 𝑥 → 𝜓 ) ) ) |
| 12 | 11 2 | sylbid | ⊢ ( 𝑥 ∈ ℕ → ( ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) → 𝜑 ) ) |
| 13 | 12 | anim2d | ⊢ ( 𝑥 ∈ ℕ → ( ( ¬ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ) → ( ¬ 𝜑 ∧ 𝜑 ) ) ) |
| 14 | ancom | ⊢ ( ( ¬ 𝜑 ∧ 𝜑 ) ↔ ( 𝜑 ∧ ¬ 𝜑 ) ) | |
| 15 | 13 14 | imbitrdi | ⊢ ( 𝑥 ∈ ℕ → ( ( ¬ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ) → ( 𝜑 ∧ ¬ 𝜑 ) ) ) |
| 16 | 3 15 | mtoi | ⊢ ( 𝑥 ∈ ℕ → ¬ ( ¬ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 17 | 16 | nrex | ⊢ ¬ ∃ 𝑥 ∈ ℕ ( ¬ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ) |
| 18 | 1 | notbid | ⊢ ( 𝑥 = 𝑦 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 19 | 18 | nnwos | ⊢ ( ∃ 𝑥 ∈ ℕ ¬ 𝜑 → ∃ 𝑥 ∈ ℕ ( ¬ 𝜑 ∧ ∀ 𝑦 ∈ ℕ ( ¬ 𝜓 → 𝑥 ≤ 𝑦 ) ) ) |
| 20 | 17 19 | mto | ⊢ ¬ ∃ 𝑥 ∈ ℕ ¬ 𝜑 |
| 21 | dfral2 | ⊢ ( ∀ 𝑥 ∈ ℕ 𝜑 ↔ ¬ ∃ 𝑥 ∈ ℕ ¬ 𝜑 ) | |
| 22 | 20 21 | mpbir | ⊢ ∀ 𝑥 ∈ ℕ 𝜑 |
| 23 | 22 | rspec | ⊢ ( 𝑥 ∈ ℕ → 𝜑 ) |