This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Principle of Mathematical Induction (inference schema). The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. See nnaddcl for an example of its use. See nn0ind for induction on nonnegative integers and uzind , uzind4 for induction on an arbitrary upper set of integers. See indstr for strong induction. See also nnindALT . This is an alternative for Metamath 100 proof #74. (Contributed by NM, 10-Jan-1997) (Revised by Mario Carneiro, 16-Jun-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nnind.1 | ||
| nnind.2 | |||
| nnind.3 | |||
| nnind.4 | |||
| nnind.5 | |||
| nnind.6 | |||
| Assertion | nnind |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnind.1 | ||
| 2 | nnind.2 | ||
| 3 | nnind.3 | ||
| 4 | nnind.4 | ||
| 5 | nnind.5 | ||
| 6 | nnind.6 | ||
| 7 | 1nn | ||
| 8 | 1 | elrab | |
| 9 | 7 5 8 | mpbir2an | |
| 10 | elrabi | ||
| 11 | peano2nn | ||
| 12 | 11 | a1d | |
| 13 | 12 6 | anim12d | |
| 14 | 2 | elrab | |
| 15 | 3 | elrab | |
| 16 | 13 14 15 | 3imtr4g | |
| 17 | 10 16 | mpcom | |
| 18 | 17 | rgen | |
| 19 | peano5nni | ||
| 20 | 9 18 19 | mp2an | |
| 21 | 20 | sseli | |
| 22 | 4 | elrab | |
| 23 | 21 22 | sylib | |
| 24 | 23 | simprd |