This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The positive integer property expressed in terms of nonnegative integers. (Contributed by NM, 1-Sep-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | elnnnn0b | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 2 | nngt0 | ⊢ ( 𝑁 ∈ ℕ → 0 < 𝑁 ) | |
| 3 | 1 2 | jca | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) ) |
| 4 | elnn0 | ⊢ ( 𝑁 ∈ ℕ0 ↔ ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) ) | |
| 5 | breq2 | ⊢ ( 𝑁 = 0 → ( 0 < 𝑁 ↔ 0 < 0 ) ) | |
| 6 | 0re | ⊢ 0 ∈ ℝ | |
| 7 | 6 | ltnri | ⊢ ¬ 0 < 0 |
| 8 | 7 | pm2.21i | ⊢ ( 0 < 0 → 𝑁 ∈ ℕ ) |
| 9 | 5 8 | biimtrdi | ⊢ ( 𝑁 = 0 → ( 0 < 𝑁 → 𝑁 ∈ ℕ ) ) |
| 10 | 9 | jao1i | ⊢ ( ( 𝑁 ∈ ℕ ∨ 𝑁 = 0 ) → ( 0 < 𝑁 → 𝑁 ∈ ℕ ) ) |
| 11 | 4 10 | sylbi | ⊢ ( 𝑁 ∈ ℕ0 → ( 0 < 𝑁 → 𝑁 ∈ ℕ ) ) |
| 12 | 11 | imp | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) → 𝑁 ∈ ℕ ) |
| 13 | 3 12 | impbii | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 0 < 𝑁 ) ) |