This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A nonnegative integer increased by 1 which is less than or equal to another integer is an element of a half-open range of integers. (Contributed by AV, 27-Feb-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn0p1elfzo | |- ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) -> K e. ( 0 ..^ N ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nn0ltp1le | |- ( ( K e. NN0 /\ N e. NN0 ) -> ( K < N <-> ( K + 1 ) <_ N ) ) |
|
| 2 | 1 | biimp3ar | |- ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) -> K < N ) |
| 3 | simpl1 | |- ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> K e. NN0 ) |
|
| 4 | simpr | |- ( ( K e. NN0 /\ N e. NN0 ) -> N e. NN0 ) |
|
| 5 | 4 | adantr | |- ( ( ( K e. NN0 /\ N e. NN0 ) /\ K < N ) -> N e. NN0 ) |
| 6 | nn0ge0 | |- ( K e. NN0 -> 0 <_ K ) |
|
| 7 | 6 | adantr | |- ( ( K e. NN0 /\ N e. NN0 ) -> 0 <_ K ) |
| 8 | 0re | |- 0 e. RR |
|
| 9 | nn0re | |- ( K e. NN0 -> K e. RR ) |
|
| 10 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 11 | lelttr | |- ( ( 0 e. RR /\ K e. RR /\ N e. RR ) -> ( ( 0 <_ K /\ K < N ) -> 0 < N ) ) |
|
| 12 | 8 9 10 11 | mp3an3an | |- ( ( K e. NN0 /\ N e. NN0 ) -> ( ( 0 <_ K /\ K < N ) -> 0 < N ) ) |
| 13 | 7 12 | mpand | |- ( ( K e. NN0 /\ N e. NN0 ) -> ( K < N -> 0 < N ) ) |
| 14 | 13 | imp | |- ( ( ( K e. NN0 /\ N e. NN0 ) /\ K < N ) -> 0 < N ) |
| 15 | elnnnn0b | |- ( N e. NN <-> ( N e. NN0 /\ 0 < N ) ) |
|
| 16 | 5 14 15 | sylanbrc | |- ( ( ( K e. NN0 /\ N e. NN0 ) /\ K < N ) -> N e. NN ) |
| 17 | 16 | 3adantl3 | |- ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> N e. NN ) |
| 18 | simpr | |- ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> K < N ) |
|
| 19 | 3 17 18 | 3jca | |- ( ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) /\ K < N ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
| 20 | 2 19 | mpdan | |- ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) -> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
| 21 | elfzo0 | |- ( K e. ( 0 ..^ N ) <-> ( K e. NN0 /\ N e. NN /\ K < N ) ) |
|
| 22 | 20 21 | sylibr | |- ( ( K e. NN0 /\ N e. NN0 /\ ( K + 1 ) <_ N ) -> K e. ( 0 ..^ N ) ) |