This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn01to3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix3 | ⊢ ( 𝑁 = 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ) | |
| 2 | 1 | a1d | ⊢ ( 𝑁 = 3 → ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ) ) |
| 3 | nn0re | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℝ ) | |
| 4 | 3 | 3ad2ant1 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → 𝑁 ∈ ℝ ) |
| 5 | 3re | ⊢ 3 ∈ ℝ | |
| 6 | 5 | a1i | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → 3 ∈ ℝ ) |
| 7 | simp3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → 𝑁 ≤ 3 ) | |
| 8 | 4 6 7 | leltned | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( 𝑁 < 3 ↔ 3 ≠ 𝑁 ) ) |
| 9 | nesym | ⊢ ( 3 ≠ 𝑁 ↔ ¬ 𝑁 = 3 ) | |
| 10 | 8 9 | bitr2di | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( ¬ 𝑁 = 3 ↔ 𝑁 < 3 ) ) |
| 11 | elnnnn0c | ⊢ ( 𝑁 ∈ ℕ ↔ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) ) | |
| 12 | orc | ⊢ ( 𝑁 = 1 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) | |
| 13 | 12 | 2a1d | ⊢ ( 𝑁 = 1 → ( 𝑁 ∈ ℕ → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) ) |
| 14 | eluz2b3 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) ) | |
| 15 | eluz2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) ) | |
| 16 | 2a1 | ⊢ ( 𝑁 = 2 → ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) | |
| 17 | zre | ⊢ ( 2 ∈ ℤ → 2 ∈ ℝ ) | |
| 18 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 19 | id | ⊢ ( 2 ≤ 𝑁 → 2 ≤ 𝑁 ) | |
| 20 | leltne | ⊢ ( ( 2 ∈ ℝ ∧ 𝑁 ∈ ℝ ∧ 2 ≤ 𝑁 ) → ( 2 < 𝑁 ↔ 𝑁 ≠ 2 ) ) | |
| 21 | 17 18 19 20 | syl3an | ⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 2 < 𝑁 ↔ 𝑁 ≠ 2 ) ) |
| 22 | 2z | ⊢ 2 ∈ ℤ | |
| 23 | simpr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 3 ) ∧ 2 < 𝑁 ) → 2 < 𝑁 ) | |
| 24 | df-3 | ⊢ 3 = ( 2 + 1 ) | |
| 25 | 24 | a1i | ⊢ ( 𝑁 ∈ ℤ → 3 = ( 2 + 1 ) ) |
| 26 | 25 | breq2d | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 < 3 ↔ 𝑁 < ( 2 + 1 ) ) ) |
| 27 | 26 | biimpa | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 3 ) → 𝑁 < ( 2 + 1 ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 3 ) ∧ 2 < 𝑁 ) → 𝑁 < ( 2 + 1 ) ) |
| 29 | btwnnz | ⊢ ( ( 2 ∈ ℤ ∧ 2 < 𝑁 ∧ 𝑁 < ( 2 + 1 ) ) → ¬ 𝑁 ∈ ℤ ) | |
| 30 | 22 23 28 29 | mp3an2i | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 3 ) ∧ 2 < 𝑁 ) → ¬ 𝑁 ∈ ℤ ) |
| 31 | 30 | pm2.21d | ⊢ ( ( ( 𝑁 ∈ ℤ ∧ 𝑁 < 3 ) ∧ 2 < 𝑁 ) → ( 𝑁 ∈ ℤ → 𝑁 = 2 ) ) |
| 32 | 31 | exp31 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 < 3 → ( 2 < 𝑁 → ( 𝑁 ∈ ℤ → 𝑁 = 2 ) ) ) ) |
| 33 | 32 | com24 | ⊢ ( 𝑁 ∈ ℤ → ( 𝑁 ∈ ℤ → ( 2 < 𝑁 → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) ) |
| 34 | 33 | pm2.43i | ⊢ ( 𝑁 ∈ ℤ → ( 2 < 𝑁 → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
| 35 | 34 | 3ad2ant2 | ⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 2 < 𝑁 → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
| 36 | 21 35 | sylbird | ⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 ≠ 2 → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
| 37 | 36 | com12 | ⊢ ( 𝑁 ≠ 2 → ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 < 3 → 𝑁 = 2 ) ) ) |
| 38 | 16 37 | pm2.61ine | ⊢ ( ( 2 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 2 ≤ 𝑁 ) → ( 𝑁 < 3 → 𝑁 = 2 ) ) |
| 39 | 15 38 | sylbi | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 3 → 𝑁 = 2 ) ) |
| 40 | 39 | imp | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 < 3 ) → 𝑁 = 2 ) |
| 41 | 40 | olcd | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) ∧ 𝑁 < 3 ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) |
| 42 | 41 | ex | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 2 ) → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 43 | 14 42 | sylbir | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑁 ≠ 1 ) → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 44 | 43 | expcom | ⊢ ( 𝑁 ≠ 1 → ( 𝑁 ∈ ℕ → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) ) |
| 45 | 13 44 | pm2.61ine | ⊢ ( 𝑁 ∈ ℕ → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 46 | 11 45 | sylbir | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ) → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 47 | 46 | 3adant3 | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( 𝑁 < 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 48 | 10 47 | sylbid | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( ¬ 𝑁 = 3 → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) ) |
| 49 | 48 | impcom | ⊢ ( ( ¬ 𝑁 = 3 ∧ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ) ) |
| 50 | 49 | orcd | ⊢ ( ( ¬ 𝑁 = 3 ∧ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) ) → ( ( 𝑁 = 1 ∨ 𝑁 = 2 ) ∨ 𝑁 = 3 ) ) |
| 51 | df-3or | ⊢ ( ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ↔ ( ( 𝑁 = 1 ∨ 𝑁 = 2 ) ∨ 𝑁 = 3 ) ) | |
| 52 | 50 51 | sylibr | ⊢ ( ( ¬ 𝑁 = 3 ∧ ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ) |
| 53 | 52 | ex | ⊢ ( ¬ 𝑁 = 3 → ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ) ) |
| 54 | 2 53 | pm2.61i | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 1 ≤ 𝑁 ∧ 𝑁 ≤ 3 ) → ( 𝑁 = 1 ∨ 𝑁 = 2 ∨ 𝑁 = 3 ) ) |