This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A (nonnegative) integer between 1 and 3 must be 1, 2 or 3. (Contributed by Alexander van der Vekens, 13-Sep-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nn01to3 | |- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( N = 1 \/ N = 2 \/ N = 3 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 3mix3 | |- ( N = 3 -> ( N = 1 \/ N = 2 \/ N = 3 ) ) |
|
| 2 | 1 | a1d | |- ( N = 3 -> ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( N = 1 \/ N = 2 \/ N = 3 ) ) ) |
| 3 | nn0re | |- ( N e. NN0 -> N e. RR ) |
|
| 4 | 3 | 3ad2ant1 | |- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> N e. RR ) |
| 5 | 3re | |- 3 e. RR |
|
| 6 | 5 | a1i | |- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> 3 e. RR ) |
| 7 | simp3 | |- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> N <_ 3 ) |
|
| 8 | 4 6 7 | leltned | |- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( N < 3 <-> 3 =/= N ) ) |
| 9 | nesym | |- ( 3 =/= N <-> -. N = 3 ) |
|
| 10 | 8 9 | bitr2di | |- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( -. N = 3 <-> N < 3 ) ) |
| 11 | elnnnn0c | |- ( N e. NN <-> ( N e. NN0 /\ 1 <_ N ) ) |
|
| 12 | orc | |- ( N = 1 -> ( N = 1 \/ N = 2 ) ) |
|
| 13 | 12 | 2a1d | |- ( N = 1 -> ( N e. NN -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) ) |
| 14 | eluz2b3 | |- ( N e. ( ZZ>= ` 2 ) <-> ( N e. NN /\ N =/= 1 ) ) |
|
| 15 | eluz2 | |- ( N e. ( ZZ>= ` 2 ) <-> ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) ) |
|
| 16 | 2a1 | |- ( N = 2 -> ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( N < 3 -> N = 2 ) ) ) |
|
| 17 | zre | |- ( 2 e. ZZ -> 2 e. RR ) |
|
| 18 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 19 | id | |- ( 2 <_ N -> 2 <_ N ) |
|
| 20 | leltne | |- ( ( 2 e. RR /\ N e. RR /\ 2 <_ N ) -> ( 2 < N <-> N =/= 2 ) ) |
|
| 21 | 17 18 19 20 | syl3an | |- ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( 2 < N <-> N =/= 2 ) ) |
| 22 | 2z | |- 2 e. ZZ |
|
| 23 | simpr | |- ( ( ( N e. ZZ /\ N < 3 ) /\ 2 < N ) -> 2 < N ) |
|
| 24 | df-3 | |- 3 = ( 2 + 1 ) |
|
| 25 | 24 | a1i | |- ( N e. ZZ -> 3 = ( 2 + 1 ) ) |
| 26 | 25 | breq2d | |- ( N e. ZZ -> ( N < 3 <-> N < ( 2 + 1 ) ) ) |
| 27 | 26 | biimpa | |- ( ( N e. ZZ /\ N < 3 ) -> N < ( 2 + 1 ) ) |
| 28 | 27 | adantr | |- ( ( ( N e. ZZ /\ N < 3 ) /\ 2 < N ) -> N < ( 2 + 1 ) ) |
| 29 | btwnnz | |- ( ( 2 e. ZZ /\ 2 < N /\ N < ( 2 + 1 ) ) -> -. N e. ZZ ) |
|
| 30 | 22 23 28 29 | mp3an2i | |- ( ( ( N e. ZZ /\ N < 3 ) /\ 2 < N ) -> -. N e. ZZ ) |
| 31 | 30 | pm2.21d | |- ( ( ( N e. ZZ /\ N < 3 ) /\ 2 < N ) -> ( N e. ZZ -> N = 2 ) ) |
| 32 | 31 | exp31 | |- ( N e. ZZ -> ( N < 3 -> ( 2 < N -> ( N e. ZZ -> N = 2 ) ) ) ) |
| 33 | 32 | com24 | |- ( N e. ZZ -> ( N e. ZZ -> ( 2 < N -> ( N < 3 -> N = 2 ) ) ) ) |
| 34 | 33 | pm2.43i | |- ( N e. ZZ -> ( 2 < N -> ( N < 3 -> N = 2 ) ) ) |
| 35 | 34 | 3ad2ant2 | |- ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( 2 < N -> ( N < 3 -> N = 2 ) ) ) |
| 36 | 21 35 | sylbird | |- ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( N =/= 2 -> ( N < 3 -> N = 2 ) ) ) |
| 37 | 36 | com12 | |- ( N =/= 2 -> ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( N < 3 -> N = 2 ) ) ) |
| 38 | 16 37 | pm2.61ine | |- ( ( 2 e. ZZ /\ N e. ZZ /\ 2 <_ N ) -> ( N < 3 -> N = 2 ) ) |
| 39 | 15 38 | sylbi | |- ( N e. ( ZZ>= ` 2 ) -> ( N < 3 -> N = 2 ) ) |
| 40 | 39 | imp | |- ( ( N e. ( ZZ>= ` 2 ) /\ N < 3 ) -> N = 2 ) |
| 41 | 40 | olcd | |- ( ( N e. ( ZZ>= ` 2 ) /\ N < 3 ) -> ( N = 1 \/ N = 2 ) ) |
| 42 | 41 | ex | |- ( N e. ( ZZ>= ` 2 ) -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 43 | 14 42 | sylbir | |- ( ( N e. NN /\ N =/= 1 ) -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 44 | 43 | expcom | |- ( N =/= 1 -> ( N e. NN -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) ) |
| 45 | 13 44 | pm2.61ine | |- ( N e. NN -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 46 | 11 45 | sylbir | |- ( ( N e. NN0 /\ 1 <_ N ) -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 47 | 46 | 3adant3 | |- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( N < 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 48 | 10 47 | sylbid | |- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( -. N = 3 -> ( N = 1 \/ N = 2 ) ) ) |
| 49 | 48 | impcom | |- ( ( -. N = 3 /\ ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) ) -> ( N = 1 \/ N = 2 ) ) |
| 50 | 49 | orcd | |- ( ( -. N = 3 /\ ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) ) -> ( ( N = 1 \/ N = 2 ) \/ N = 3 ) ) |
| 51 | df-3or | |- ( ( N = 1 \/ N = 2 \/ N = 3 ) <-> ( ( N = 1 \/ N = 2 ) \/ N = 3 ) ) |
|
| 52 | 50 51 | sylibr | |- ( ( -. N = 3 /\ ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) ) -> ( N = 1 \/ N = 2 \/ N = 3 ) ) |
| 53 | 52 | ex | |- ( -. N = 3 -> ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( N = 1 \/ N = 2 \/ N = 3 ) ) ) |
| 54 | 2 53 | pm2.61i | |- ( ( N e. NN0 /\ 1 <_ N /\ N <_ 3 ) -> ( N = 1 \/ N = 2 \/ N = 3 ) ) |