This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for an operator norm. (Contributed by NM, 11-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | ||
| nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | ||
| nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | nmoub2i | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoubi.y | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoubi.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | |
| 4 | nmoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 5 | nmoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | nmoubi.u | ⊢ 𝑈 ∈ NrmCVec | |
| 7 | nmoubi.w | ⊢ 𝑊 ∈ NrmCVec | |
| 8 | 1 2 3 4 5 6 7 | nmoub3i | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ 𝐴 ∈ ℝ ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ ( abs ‘ 𝐴 ) ) |
| 9 | 8 | 3adant2r | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ ( abs ‘ 𝐴 ) ) |
| 10 | absid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) | |
| 11 | 10 | 3ad2ant2 | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( abs ‘ 𝐴 ) = 𝐴 ) |
| 12 | 9 11 | breqtrd | ⊢ ( ( 𝑇 : 𝑋 ⟶ 𝑌 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ) |