This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A real number is less than or equal to its absolute value. (Contributed by NM, 27-Feb-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | leabs | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 0red | ⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) | |
| 2 | id | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) | |
| 3 | absid | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( abs ‘ 𝐴 ) = 𝐴 ) | |
| 4 | eqcom | ⊢ ( ( abs ‘ 𝐴 ) = 𝐴 ↔ 𝐴 = ( abs ‘ 𝐴 ) ) | |
| 5 | eqle | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 = ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) | |
| 6 | 4 5 | sylan2b | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( abs ‘ 𝐴 ) = 𝐴 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 7 | 3 6 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 8 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 9 | absge0 | ⊢ ( 𝐴 ∈ ℂ → 0 ≤ ( abs ‘ 𝐴 ) ) | |
| 10 | 8 9 | syl | ⊢ ( 𝐴 ∈ ℝ → 0 ≤ ( abs ‘ 𝐴 ) ) |
| 11 | abscl | ⊢ ( 𝐴 ∈ ℂ → ( abs ‘ 𝐴 ) ∈ ℝ ) | |
| 12 | 8 11 | syl | ⊢ ( 𝐴 ∈ ℝ → ( abs ‘ 𝐴 ) ∈ ℝ ) |
| 13 | 0re | ⊢ 0 ∈ ℝ | |
| 14 | letr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 0 ∈ ℝ ∧ ( abs ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) | |
| 15 | 13 14 | mp3an2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( abs ‘ 𝐴 ) ∈ ℝ ) → ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) |
| 16 | 12 15 | mpdan | ⊢ ( 𝐴 ∈ ℝ → ( ( 𝐴 ≤ 0 ∧ 0 ≤ ( abs ‘ 𝐴 ) ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) |
| 17 | 10 16 | mpan2d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≤ 0 → 𝐴 ≤ ( abs ‘ 𝐴 ) ) ) |
| 18 | 17 | imp | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≤ 0 ) → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |
| 19 | 1 2 7 18 | lecasei | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ≤ ( abs ‘ 𝐴 ) ) |