This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for an operator norm. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmoolb.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmoolb.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | ||
| nmoolb.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | ||
| nmoolb.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmoolb.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| Assertion | nmoolb | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( 𝑁 ‘ 𝑇 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmoolb.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmoolb.2 | ⊢ 𝑌 = ( BaseSet ‘ 𝑊 ) | |
| 3 | nmoolb.l | ⊢ 𝐿 = ( normCV ‘ 𝑈 ) | |
| 4 | nmoolb.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 5 | nmoolb.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | 2 4 | nmosetre | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ ) |
| 7 | ressxr | ⊢ ℝ ⊆ ℝ* | |
| 8 | 6 7 | sstrdi | ⊢ ( ( 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
| 9 | 8 | 3adant1 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ) |
| 10 | fveq2 | ⊢ ( 𝑦 = 𝐴 → ( 𝐿 ‘ 𝑦 ) = ( 𝐿 ‘ 𝐴 ) ) | |
| 11 | 10 | breq1d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ↔ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) ) |
| 12 | 2fveq3 | ⊢ ( 𝑦 = 𝐴 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ) | |
| 13 | 12 | eqeq2d | ⊢ ( 𝑦 = 𝐴 → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 14 | 11 13 | anbi12d | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( 𝐿 ‘ 𝐴 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) ) |
| 15 | eqid | ⊢ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) | |
| 16 | 15 | biantru | ⊢ ( ( 𝐿 ‘ 𝐴 ) ≤ 1 ↔ ( ( 𝐿 ‘ 𝐴 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ) ) |
| 17 | 14 16 | bitr4di | ⊢ ( 𝑦 = 𝐴 → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) ) |
| 18 | 17 | rspcev | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 19 | fvex | ⊢ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ V | |
| 20 | eqeq1 | ⊢ ( 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) → ( 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 21 | 20 | anbi2d | ⊢ ( 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) → ( ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 22 | 21 | rexbidv | ⊢ ( 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) → ( ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 23 | 19 22 | elab | ⊢ ( ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 24 | 18 23 | sylibr | ⊢ ( ( 𝐴 ∈ 𝑋 ∧ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
| 25 | supxrub | ⊢ ( ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ⊆ ℝ* ∧ ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) | |
| 26 | 9 24 25 | syl2an | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ sup ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 27 | 1 2 3 4 5 | nmooval | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 28 | 27 | adantr | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) ) → ( 𝑁 ‘ 𝑇 ) = sup ( { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝐿 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑀 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } , ℝ* , < ) ) |
| 29 | 26 28 | breqtrrd | ⊢ ( ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 : 𝑋 ⟶ 𝑌 ) ∧ ( 𝐴 ∈ 𝑋 ∧ ( 𝐿 ‘ 𝐴 ) ≤ 1 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( 𝑁 ‘ 𝑇 ) ) |