This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The set in the supremum of the operator norm definition df-nmoo is nonempty. (Contributed by NM, 8-Dec-2007) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmosetn0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmosetn0.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| nmosetn0.4 | ⊢ 𝑀 = ( normCV ‘ 𝑈 ) | ||
| Assertion | nmosetn0 | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmosetn0.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmosetn0.5 | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 3 | nmosetn0.4 | ⊢ 𝑀 = ( normCV ‘ 𝑈 ) | |
| 4 | 1 2 | nvzcl | ⊢ ( 𝑈 ∈ NrmCVec → 𝑍 ∈ 𝑋 ) |
| 5 | 2 3 | nvz0 | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑀 ‘ 𝑍 ) = 0 ) |
| 6 | 0le1 | ⊢ 0 ≤ 1 | |
| 7 | 5 6 | eqbrtrdi | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑀 ‘ 𝑍 ) ≤ 1 ) |
| 8 | eqid | ⊢ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) | |
| 9 | 7 8 | jctir | ⊢ ( 𝑈 ∈ NrmCVec → ( ( 𝑀 ‘ 𝑍 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ) ) |
| 10 | fveq2 | ⊢ ( 𝑦 = 𝑍 → ( 𝑀 ‘ 𝑦 ) = ( 𝑀 ‘ 𝑍 ) ) | |
| 11 | 10 | breq1d | ⊢ ( 𝑦 = 𝑍 → ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ↔ ( 𝑀 ‘ 𝑍 ) ≤ 1 ) ) |
| 12 | 2fveq3 | ⊢ ( 𝑦 = 𝑍 → ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ) | |
| 13 | 12 | eqeq2d | ⊢ ( 𝑦 = 𝑍 → ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ) ) |
| 14 | 11 13 | anbi12d | ⊢ ( 𝑦 = 𝑍 → ( ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( 𝑀 ‘ 𝑍 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ) ) ) |
| 15 | 14 | rspcev | ⊢ ( ( 𝑍 ∈ 𝑋 ∧ ( ( 𝑀 ‘ 𝑍 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ) ) → ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 16 | 4 9 15 | syl2anc | ⊢ ( 𝑈 ∈ NrmCVec → ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 17 | fvex | ⊢ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ∈ V | |
| 18 | eqeq1 | ⊢ ( 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) → ( 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ↔ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) | |
| 19 | 18 | anbi2d | ⊢ ( 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) → ( ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 20 | 19 | rexbidv | ⊢ ( 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) → ( ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) ) |
| 21 | 17 20 | elab | ⊢ ( ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ↔ ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) ) |
| 22 | 16 21 | sylibr | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝑁 ‘ ( 𝑇 ‘ 𝑍 ) ) ∈ { 𝑥 ∣ ∃ 𝑦 ∈ 𝑋 ( ( 𝑀 ‘ 𝑦 ) ≤ 1 ∧ 𝑥 = ( 𝑁 ‘ ( 𝑇 ‘ 𝑦 ) ) ) } ) |