This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm, defined as an infimum of upper bounds, can also be defined as a supremum of norms of F ( x ) away from zero. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmoi.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmoi.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmoi.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| nmoi2.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | ||
| nmoleub.1 | ⊢ ( 𝜑 → 𝑆 ∈ NrmGrp ) | ||
| nmoleub.2 | ⊢ ( 𝜑 → 𝑇 ∈ NrmGrp ) | ||
| nmoleub.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | ||
| nmoleub.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | ||
| nmoleub.5 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | ||
| Assertion | nmoleub | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmoi.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmoi.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmoi.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | nmoi2.z | ⊢ 0 = ( 0g ‘ 𝑆 ) | |
| 6 | nmoleub.1 | ⊢ ( 𝜑 → 𝑆 ∈ NrmGrp ) | |
| 7 | nmoleub.2 | ⊢ ( 𝜑 → 𝑇 ∈ NrmGrp ) | |
| 8 | nmoleub.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) | |
| 9 | nmoleub.4 | ⊢ ( 𝜑 → 𝐴 ∈ ℝ* ) | |
| 10 | nmoleub.5 | ⊢ ( 𝜑 → 0 ≤ 𝐴 ) | |
| 11 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → 𝑇 ∈ NrmGrp ) |
| 12 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 13 | 2 12 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 14 | 8 13 | syl | ⊢ ( 𝜑 → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 15 | 14 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 16 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → 𝑥 ∈ 𝑉 ) | |
| 17 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) | |
| 18 | 15 16 17 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
| 19 | 12 4 | nmcl | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 20 | 11 18 19 | syl2anc | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 21 | 6 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) → 𝑆 ∈ NrmGrp ) |
| 22 | 2 3 5 | nmrpcl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ+ ) |
| 23 | 22 | 3expb | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ+ ) |
| 24 | 21 23 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ+ ) |
| 25 | 20 24 | rerpdivcld | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ ) |
| 26 | 25 | rexrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ∈ ℝ* ) |
| 27 | 1 | nmocl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 28 | 6 7 8 27 | syl3anc | ⊢ ( 𝜑 → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 30 | 9 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → 𝐴 ∈ ℝ* ) |
| 31 | 6 7 8 | 3jca | ⊢ ( 𝜑 → ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) → ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ) |
| 33 | 1 2 3 4 5 | nmoi2 | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 34 | 32 33 | sylan | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 35 | simplr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) | |
| 36 | 26 29 30 34 35 | xrletrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ ( 𝑥 ∈ 𝑉 ∧ 𝑥 ≠ 0 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) |
| 37 | 36 | expr | ⊢ ( ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 38 | 37 | ralrimiva | ⊢ ( ( 𝜑 ∧ ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) → ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) |
| 39 | 0le0 | ⊢ 0 ≤ 0 | |
| 40 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℝ ) | |
| 41 | 40 | recnd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → 𝐴 ∈ ℂ ) |
| 42 | 41 | mul01d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → ( 𝐴 · 0 ) = 0 ) |
| 43 | 39 42 | breqtrrid | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → 0 ≤ ( 𝐴 · 0 ) ) |
| 44 | fveq2 | ⊢ ( 𝑥 = 0 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 0 ) ) | |
| 45 | 8 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 46 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 47 | 5 46 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑇 ) ) |
| 48 | 45 47 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ 0 ) = ( 0g ‘ 𝑇 ) ) |
| 49 | 44 48 | sylan9eqr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → ( 𝐹 ‘ 𝑥 ) = ( 0g ‘ 𝑇 ) ) |
| 50 | 49 | fveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) ) |
| 51 | 7 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → 𝑇 ∈ NrmGrp ) |
| 52 | 4 46 | nm0 | ⊢ ( 𝑇 ∈ NrmGrp → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 53 | 51 52 | syl | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 54 | 50 53 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = 0 ) |
| 55 | fveq2 | ⊢ ( 𝑥 = 0 → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ 0 ) ) | |
| 56 | 6 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) → 𝑆 ∈ NrmGrp ) |
| 57 | 3 5 | nm0 | ⊢ ( 𝑆 ∈ NrmGrp → ( 𝐿 ‘ 0 ) = 0 ) |
| 58 | 56 57 | syl | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐿 ‘ 0 ) = 0 ) |
| 59 | 55 58 | sylan9eqr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → ( 𝐿 ‘ 𝑥 ) = 0 ) |
| 60 | 59 | oveq2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) = ( 𝐴 · 0 ) ) |
| 61 | 43 54 60 | 3brtr4d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) |
| 62 | 61 | a1d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 = 0 ) → ( ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 63 | simpr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 ≠ 0 ) → 𝑥 ≠ 0 ) | |
| 64 | 7 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) → 𝑇 ∈ NrmGrp ) |
| 65 | 14 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 66 | 65 17 | sylan | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑥 ) ∈ ( Base ‘ 𝑇 ) ) |
| 67 | 64 66 19 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 68 | 67 | adantr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 ≠ 0 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ∈ ℝ ) |
| 69 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 ≠ 0 ) → 𝐴 ∈ ℝ ) | |
| 70 | 6 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝑆 ∈ NrmGrp ) |
| 71 | 22 | 3expa | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 ≠ 0 ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ+ ) |
| 72 | 70 71 | sylanl1 | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 ≠ 0 ) → ( 𝐿 ‘ 𝑥 ) ∈ ℝ+ ) |
| 73 | 68 69 72 | ledivmul2d | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 ≠ 0 ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 74 | 73 | biimpd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 ≠ 0 ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 75 | 63 74 | embantd | ⊢ ( ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) ∧ 𝑥 ≠ 0 ) → ( ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 76 | 62 75 | pm2.61dane | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ 𝑥 ∈ 𝑉 ) → ( ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 77 | 76 | ralimdva | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) → ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) ) ) |
| 78 | 7 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝑇 ∈ NrmGrp ) |
| 79 | 8 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 80 | simpr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 𝐴 ∈ ℝ ) | |
| 81 | 10 | adantr | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → 0 ≤ 𝐴 ) |
| 82 | 1 2 3 4 | nmolb | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 83 | 70 78 79 80 81 82 | syl311anc | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 84 | 77 83 | syld | ⊢ ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) ) |
| 85 | 84 | imp | ⊢ ( ( ( 𝜑 ∧ 𝐴 ∈ ℝ ) ∧ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| 86 | 85 | an32s | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ∧ 𝐴 ∈ ℝ ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| 87 | 28 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ* ) |
| 88 | pnfge | ⊢ ( ( 𝑁 ‘ 𝐹 ) ∈ ℝ* → ( 𝑁 ‘ 𝐹 ) ≤ +∞ ) | |
| 89 | 87 88 | syl | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → ( 𝑁 ‘ 𝐹 ) ≤ +∞ ) |
| 90 | simpr | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → 𝐴 = +∞ ) | |
| 91 | 89 90 | breqtrrd | ⊢ ( ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ∧ 𝐴 = +∞ ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| 92 | ge0nemnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 0 ≤ 𝐴 ) → 𝐴 ≠ -∞ ) | |
| 93 | 9 10 92 | syl2anc | ⊢ ( 𝜑 → 𝐴 ≠ -∞ ) |
| 94 | 9 93 | jca | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ) |
| 95 | xrnemnf | ⊢ ( ( 𝐴 ∈ ℝ* ∧ 𝐴 ≠ -∞ ) ↔ ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) | |
| 96 | 94 95 | sylib | ⊢ ( 𝜑 → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |
| 97 | 96 | adantr | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) → ( 𝐴 ∈ ℝ ∨ 𝐴 = +∞ ) ) |
| 98 | 86 91 97 | mpjaodan | ⊢ ( ( 𝜑 ∧ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) → ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ) |
| 99 | 38 98 | impbida | ⊢ ( 𝜑 → ( ( 𝑁 ‘ 𝐹 ) ≤ 𝐴 ↔ ∀ 𝑥 ∈ 𝑉 ( 𝑥 ≠ 0 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) / ( 𝐿 ‘ 𝑥 ) ) ≤ 𝐴 ) ) ) |