This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmoi.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmoi.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmoi.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| Assertion | nmoi | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmoi.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmoi.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmoi.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | 2fveq3 | ⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ) | |
| 6 | fveq2 | ⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( 𝐿 ‘ 𝑋 ) = ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) | |
| 7 | 6 | oveq2d | ⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) = ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
| 8 | 5 7 | breq12d | ⊢ ( 𝑋 = ( 0g ‘ 𝑆 ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ) ) |
| 9 | 2fveq3 | ⊢ ( 𝑥 = 𝑋 → ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑋 → ( 𝐿 ‘ 𝑥 ) = ( 𝐿 ‘ 𝑋 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑥 = 𝑋 → ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) = ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) |
| 12 | 9 11 | breq12d | ⊢ ( 𝑥 = 𝑋 → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) ) |
| 13 | 12 | rspcv | ⊢ ( 𝑋 ∈ 𝑉 → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) ) |
| 14 | 13 | ad3antlr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) ) |
| 15 | 1 | isnghm | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |
| 16 | 15 | simplbi | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ) |
| 17 | 16 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ) |
| 18 | 17 | simprd | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑇 ∈ NrmGrp ) |
| 19 | 15 | simprbi | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
| 20 | 19 | adantr | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) |
| 21 | 20 | simpld | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 22 | eqid | ⊢ ( Base ‘ 𝑇 ) = ( Base ‘ 𝑇 ) | |
| 23 | 2 22 | ghmf | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 24 | 21 23 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ) |
| 25 | ffvelcdm | ⊢ ( ( 𝐹 : 𝑉 ⟶ ( Base ‘ 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) | |
| 26 | 24 25 | sylancom | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) |
| 27 | 22 4 | nmcl | ⊢ ( ( 𝑇 ∈ NrmGrp ∧ ( 𝐹 ‘ 𝑋 ) ∈ ( Base ‘ 𝑇 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 28 | 18 26 27 | syl2anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 29 | 28 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 30 | 29 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ) |
| 31 | elrege0 | ⊢ ( 𝑟 ∈ ( 0 [,) +∞ ) ↔ ( 𝑟 ∈ ℝ ∧ 0 ≤ 𝑟 ) ) | |
| 32 | 31 | simplbi | ⊢ ( 𝑟 ∈ ( 0 [,) +∞ ) → 𝑟 ∈ ℝ ) |
| 33 | 32 | adantl | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → 𝑟 ∈ ℝ ) |
| 34 | 17 | simpld | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑆 ∈ NrmGrp ) |
| 35 | simpr | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) | |
| 36 | 34 35 | jca | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) ) |
| 37 | eqid | ⊢ ( 0g ‘ 𝑆 ) = ( 0g ‘ 𝑆 ) | |
| 38 | 2 3 37 | nmrpcl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
| 39 | 38 | 3expa | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
| 40 | 36 39 | sylan | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝐿 ‘ 𝑋 ) ∈ ℝ+ ) |
| 41 | 40 | rpregt0d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( 𝐿 ‘ 𝑋 ) ∈ ℝ ∧ 0 < ( 𝐿 ‘ 𝑋 ) ) ) |
| 42 | 41 | adantr | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → ( ( 𝐿 ‘ 𝑋 ) ∈ ℝ ∧ 0 < ( 𝐿 ‘ 𝑋 ) ) ) |
| 43 | ledivmul2 | ⊢ ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ∈ ℝ ∧ 𝑟 ∈ ℝ ∧ ( ( 𝐿 ‘ 𝑋 ) ∈ ℝ ∧ 0 < ( 𝐿 ‘ 𝑋 ) ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) ) | |
| 44 | 30 33 42 43 | syl3anc | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑋 ) ) ) ) |
| 45 | 14 44 | sylibrd | ⊢ ( ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) ∧ 𝑟 ∈ ( 0 [,) +∞ ) ) → ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ) ) |
| 46 | 45 | ralrimiva | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ) ) |
| 47 | 34 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → 𝑆 ∈ NrmGrp ) |
| 48 | 18 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → 𝑇 ∈ NrmGrp ) |
| 49 | 21 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) |
| 50 | 29 40 | rerpdivcld | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ ) |
| 51 | 50 | rexrd | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ* ) |
| 52 | 1 2 3 4 | nmogelb | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ∈ ℝ* ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ) ) ) |
| 53 | 47 48 49 51 52 | syl31anc | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ 𝑟 ) ) ) |
| 54 | 46 53 | mpbird | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 55 | 20 | simprd | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
| 56 | 55 | adantr | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) |
| 57 | 29 56 40 | ledivmul2d | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( ( ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) / ( 𝐿 ‘ 𝑋 ) ) ≤ ( 𝑁 ‘ 𝐹 ) ↔ ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) ) |
| 58 | 54 57 | mpbid | ⊢ ( ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) ∧ 𝑋 ≠ ( 0g ‘ 𝑆 ) ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) |
| 59 | eqid | ⊢ ( 0g ‘ 𝑇 ) = ( 0g ‘ 𝑇 ) | |
| 60 | 37 59 | ghmid | ⊢ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 61 | 21 60 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) = ( 0g ‘ 𝑇 ) ) |
| 62 | 61 | fveq2d | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) ) |
| 63 | 4 59 | nm0 | ⊢ ( 𝑇 ∈ NrmGrp → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 64 | 18 63 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 0g ‘ 𝑇 ) ) = 0 ) |
| 65 | 62 64 | eqtrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) = 0 ) |
| 66 | 3 37 | nm0 | ⊢ ( 𝑆 ∈ NrmGrp → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
| 67 | 34 66 | syl | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) = 0 ) |
| 68 | 0re | ⊢ 0 ∈ ℝ | |
| 69 | 67 68 | eqeltrdi | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ∈ ℝ ) |
| 70 | 1 | nmoge0 | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 71 | 34 18 21 70 | syl3anc | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 0 ≤ ( 𝑁 ‘ 𝐹 ) ) |
| 72 | 0le0 | ⊢ 0 ≤ 0 | |
| 73 | 72 67 | breqtrrid | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 0 ≤ ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) |
| 74 | 55 69 71 73 | mulge0d | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → 0 ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
| 75 | 65 74 | eqbrtrd | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ ( 0g ‘ 𝑆 ) ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ ( 0g ‘ 𝑆 ) ) ) ) |
| 76 | 8 58 75 | pm2.61ne | ⊢ ( ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ∧ 𝑋 ∈ 𝑉 ) → ( 𝑀 ‘ ( 𝐹 ‘ 𝑋 ) ) ≤ ( ( 𝑁 ‘ 𝐹 ) · ( 𝐿 ‘ 𝑋 ) ) ) |