This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A normed group homomorphism is a group homomorphism with bounded norm. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| Assertion | isnghm | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | 1 | nghmfval | ⊢ ( 𝑆 NGHom 𝑇 ) = ( ◡ 𝑁 “ ℝ ) |
| 3 | 2 | eleq2i | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ 𝐹 ∈ ( ◡ 𝑁 “ ℝ ) ) |
| 4 | n0i | ⊢ ( 𝐹 ∈ ( ◡ 𝑁 “ ℝ ) → ¬ ( ◡ 𝑁 “ ℝ ) = ∅ ) | |
| 5 | nmoffn | ⊢ normOp Fn ( NrmGrp × NrmGrp ) | |
| 6 | 5 | fndmi | ⊢ dom normOp = ( NrmGrp × NrmGrp ) |
| 7 | 6 | ndmov | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝑆 normOp 𝑇 ) = ∅ ) |
| 8 | 1 7 | eqtrid | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 = ∅ ) |
| 9 | 8 | cnveqd | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ◡ 𝑁 = ◡ ∅ ) |
| 10 | cnv0 | ⊢ ◡ ∅ = ∅ | |
| 11 | 9 10 | eqtrdi | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ◡ 𝑁 = ∅ ) |
| 12 | 11 | imaeq1d | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( ◡ 𝑁 “ ℝ ) = ( ∅ “ ℝ ) ) |
| 13 | 0ima | ⊢ ( ∅ “ ℝ ) = ∅ | |
| 14 | 12 13 | eqtrdi | ⊢ ( ¬ ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( ◡ 𝑁 “ ℝ ) = ∅ ) |
| 15 | 4 14 | nsyl2 | ⊢ ( 𝐹 ∈ ( ◡ 𝑁 “ ℝ ) → ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ) |
| 16 | 1 | nmof | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → 𝑁 : ( 𝑆 GrpHom 𝑇 ) ⟶ ℝ* ) |
| 17 | ffn | ⊢ ( 𝑁 : ( 𝑆 GrpHom 𝑇 ) ⟶ ℝ* → 𝑁 Fn ( 𝑆 GrpHom 𝑇 ) ) | |
| 18 | elpreima | ⊢ ( 𝑁 Fn ( 𝑆 GrpHom 𝑇 ) → ( 𝐹 ∈ ( ◡ 𝑁 “ ℝ ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) | |
| 19 | 16 17 18 | 3syl | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) → ( 𝐹 ∈ ( ◡ 𝑁 “ ℝ ) ↔ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |
| 20 | 15 19 | biadanii | ⊢ ( 𝐹 ∈ ( ◡ 𝑁 “ ℝ ) ↔ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |
| 21 | 3 20 | bitri | ⊢ ( 𝐹 ∈ ( 𝑆 NGHom 𝑇 ) ↔ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ) ∧ ( 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ∧ ( 𝑁 ‘ 𝐹 ) ∈ ℝ ) ) ) |