This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Property of the operator norm. (Contributed by Mario Carneiro, 18-Oct-2015) (Proof shortened by AV, 26-Sep-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| nmofval.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | ||
| nmofval.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | ||
| nmofval.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | ||
| Assertion | nmogelb | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( 𝑁 ‘ 𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → 𝐴 ≤ 𝑟 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | ⊢ 𝑁 = ( 𝑆 normOp 𝑇 ) | |
| 2 | nmofval.2 | ⊢ 𝑉 = ( Base ‘ 𝑆 ) | |
| 3 | nmofval.3 | ⊢ 𝐿 = ( norm ‘ 𝑆 ) | |
| 4 | nmofval.4 | ⊢ 𝑀 = ( norm ‘ 𝑇 ) | |
| 5 | 1 2 3 4 | nmoval | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝑁 ‘ 𝐹 ) = inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) |
| 6 | 5 | breq2d | ⊢ ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) → ( 𝐴 ≤ ( 𝑁 ‘ 𝐹 ) ↔ 𝐴 ≤ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ) ) |
| 7 | ssrab2 | ⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ( 0 [,) +∞ ) | |
| 8 | icossxr | ⊢ ( 0 [,) +∞ ) ⊆ ℝ* | |
| 9 | 7 8 | sstri | ⊢ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ℝ* |
| 10 | infxrgelb | ⊢ ( ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } ⊆ ℝ* ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ↔ ∀ 𝑠 ∈ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } 𝐴 ≤ 𝑠 ) ) | |
| 11 | 9 10 | mpan | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ≤ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ↔ ∀ 𝑠 ∈ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } 𝐴 ≤ 𝑠 ) ) |
| 12 | breq2 | ⊢ ( 𝑠 = 𝑟 → ( 𝐴 ≤ 𝑠 ↔ 𝐴 ≤ 𝑟 ) ) | |
| 13 | 12 | ralrab2 | ⊢ ( ∀ 𝑠 ∈ { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } 𝐴 ≤ 𝑠 ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → 𝐴 ≤ 𝑟 ) ) |
| 14 | 11 13 | bitrdi | ⊢ ( 𝐴 ∈ ℝ* → ( 𝐴 ≤ inf ( { 𝑟 ∈ ( 0 [,) +∞ ) ∣ ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) } , ℝ* , < ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → 𝐴 ≤ 𝑟 ) ) ) |
| 15 | 6 14 | sylan9bb | ⊢ ( ( ( 𝑆 ∈ NrmGrp ∧ 𝑇 ∈ NrmGrp ∧ 𝐹 ∈ ( 𝑆 GrpHom 𝑇 ) ) ∧ 𝐴 ∈ ℝ* ) → ( 𝐴 ≤ ( 𝑁 ‘ 𝐹 ) ↔ ∀ 𝑟 ∈ ( 0 [,) +∞ ) ( ∀ 𝑥 ∈ 𝑉 ( 𝑀 ‘ ( 𝐹 ‘ 𝑥 ) ) ≤ ( 𝑟 · ( 𝐿 ‘ 𝑥 ) ) → 𝐴 ≤ 𝑟 ) ) ) |