This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmlnoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| nmlnoubi.z | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | ||
| nmlnoubi.k | ⊢ 𝐾 = ( normCV ‘ 𝑈 ) | ||
| nmlnoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | ||
| nmlnoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | ||
| nmlnoubi.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | ||
| nmlnoubi.u | ⊢ 𝑈 ∈ NrmCVec | ||
| nmlnoubi.w | ⊢ 𝑊 ∈ NrmCVec | ||
| Assertion | nmlnoubi | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑥 ≠ 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlnoubi.1 | ⊢ 𝑋 = ( BaseSet ‘ 𝑈 ) | |
| 2 | nmlnoubi.z | ⊢ 𝑍 = ( 0vec ‘ 𝑈 ) | |
| 3 | nmlnoubi.k | ⊢ 𝐾 = ( normCV ‘ 𝑈 ) | |
| 4 | nmlnoubi.m | ⊢ 𝑀 = ( normCV ‘ 𝑊 ) | |
| 5 | nmlnoubi.3 | ⊢ 𝑁 = ( 𝑈 normOpOLD 𝑊 ) | |
| 6 | nmlnoubi.7 | ⊢ 𝐿 = ( 𝑈 LnOp 𝑊 ) | |
| 7 | nmlnoubi.u | ⊢ 𝑈 ∈ NrmCVec | |
| 8 | nmlnoubi.w | ⊢ 𝑊 ∈ NrmCVec | |
| 9 | 2fveq3 | ⊢ ( 𝑥 = 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) = ( 𝑀 ‘ ( 𝑇 ‘ 𝑍 ) ) ) | |
| 10 | fveq2 | ⊢ ( 𝑥 = 𝑍 → ( 𝐾 ‘ 𝑥 ) = ( 𝐾 ‘ 𝑍 ) ) | |
| 11 | 10 | oveq2d | ⊢ ( 𝑥 = 𝑍 → ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) = ( 𝐴 · ( 𝐾 ‘ 𝑍 ) ) ) |
| 12 | 9 11 | breq12d | ⊢ ( 𝑥 = 𝑍 → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ↔ ( 𝑀 ‘ ( 𝑇 ‘ 𝑍 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑍 ) ) ) ) |
| 13 | id | ⊢ ( ( 𝑥 ≠ 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) → ( 𝑥 ≠ 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) ) | |
| 14 | 13 | imp | ⊢ ( ( ( 𝑥 ≠ 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) ∧ 𝑥 ≠ 𝑍 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) |
| 15 | 14 | adantll | ⊢ ( ( ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ( 𝑥 ≠ 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) ) ∧ 𝑥 ≠ 𝑍 ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) |
| 16 | 0le0 | ⊢ 0 ≤ 0 | |
| 17 | eqid | ⊢ ( BaseSet ‘ 𝑊 ) = ( BaseSet ‘ 𝑊 ) | |
| 18 | eqid | ⊢ ( 0vec ‘ 𝑊 ) = ( 0vec ‘ 𝑊 ) | |
| 19 | 1 17 2 18 6 | lno0 | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → ( 𝑇 ‘ 𝑍 ) = ( 0vec ‘ 𝑊 ) ) |
| 20 | 7 8 19 | mp3an12 | ⊢ ( 𝑇 ∈ 𝐿 → ( 𝑇 ‘ 𝑍 ) = ( 0vec ‘ 𝑊 ) ) |
| 21 | 20 | fveq2d | ⊢ ( 𝑇 ∈ 𝐿 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑍 ) ) = ( 𝑀 ‘ ( 0vec ‘ 𝑊 ) ) ) |
| 22 | 18 4 | nvz0 | ⊢ ( 𝑊 ∈ NrmCVec → ( 𝑀 ‘ ( 0vec ‘ 𝑊 ) ) = 0 ) |
| 23 | 8 22 | ax-mp | ⊢ ( 𝑀 ‘ ( 0vec ‘ 𝑊 ) ) = 0 |
| 24 | 21 23 | eqtrdi | ⊢ ( 𝑇 ∈ 𝐿 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑍 ) ) = 0 ) |
| 25 | 24 | adantr | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑍 ) ) = 0 ) |
| 26 | 2 3 | nvz0 | ⊢ ( 𝑈 ∈ NrmCVec → ( 𝐾 ‘ 𝑍 ) = 0 ) |
| 27 | 7 26 | ax-mp | ⊢ ( 𝐾 ‘ 𝑍 ) = 0 |
| 28 | 27 | oveq2i | ⊢ ( 𝐴 · ( 𝐾 ‘ 𝑍 ) ) = ( 𝐴 · 0 ) |
| 29 | recn | ⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) | |
| 30 | 29 | mul01d | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 0 ) = 0 ) |
| 31 | 28 30 | eqtrid | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · ( 𝐾 ‘ 𝑍 ) ) = 0 ) |
| 32 | 31 | ad2antrl | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝐴 · ( 𝐾 ‘ 𝑍 ) ) = 0 ) |
| 33 | 25 32 | breq12d | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( ( 𝑀 ‘ ( 𝑇 ‘ 𝑍 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑍 ) ) ↔ 0 ≤ 0 ) ) |
| 34 | 16 33 | mpbiri | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑍 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑍 ) ) ) |
| 35 | 34 | adantr | ⊢ ( ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ( 𝑥 ≠ 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑍 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑍 ) ) ) |
| 36 | 12 15 35 | pm2.61ne | ⊢ ( ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) ∧ ( 𝑥 ≠ 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) |
| 37 | 36 | ex | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( ( 𝑥 ≠ 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) ) |
| 38 | 37 | ralimdv | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ) → ( ∀ 𝑥 ∈ 𝑋 ( 𝑥 ≠ 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) ) |
| 39 | 38 | 3impia | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑥 ≠ 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) ) → ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) |
| 40 | 1 17 6 | lnof | ⊢ ( ( 𝑈 ∈ NrmCVec ∧ 𝑊 ∈ NrmCVec ∧ 𝑇 ∈ 𝐿 ) → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 41 | 7 8 40 | mp3an12 | ⊢ ( 𝑇 ∈ 𝐿 → 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ) |
| 42 | 1 17 3 4 5 7 8 | nmoub2i | ⊢ ( ( 𝑇 : 𝑋 ⟶ ( BaseSet ‘ 𝑊 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ) |
| 43 | 41 42 | syl3an1 | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ) |
| 44 | 39 43 | syld3an3 | ⊢ ( ( 𝑇 ∈ 𝐿 ∧ ( 𝐴 ∈ ℝ ∧ 0 ≤ 𝐴 ) ∧ ∀ 𝑥 ∈ 𝑋 ( 𝑥 ≠ 𝑍 → ( 𝑀 ‘ ( 𝑇 ‘ 𝑥 ) ) ≤ ( 𝐴 · ( 𝐾 ‘ 𝑥 ) ) ) ) → ( 𝑁 ‘ 𝑇 ) ≤ 𝐴 ) |