This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An upper bound for the operator norm of a linear operator, using only the properties of nonzero arguments. (Contributed by NM, 1-Jan-2008) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmlnoubi.1 | |- X = ( BaseSet ` U ) |
|
| nmlnoubi.z | |- Z = ( 0vec ` U ) |
||
| nmlnoubi.k | |- K = ( normCV ` U ) |
||
| nmlnoubi.m | |- M = ( normCV ` W ) |
||
| nmlnoubi.3 | |- N = ( U normOpOLD W ) |
||
| nmlnoubi.7 | |- L = ( U LnOp W ) |
||
| nmlnoubi.u | |- U e. NrmCVec |
||
| nmlnoubi.w | |- W e. NrmCVec |
||
| Assertion | nmlnoubi | |- ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) /\ A. x e. X ( x =/= Z -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) ) -> ( N ` T ) <_ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmlnoubi.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nmlnoubi.z | |- Z = ( 0vec ` U ) |
|
| 3 | nmlnoubi.k | |- K = ( normCV ` U ) |
|
| 4 | nmlnoubi.m | |- M = ( normCV ` W ) |
|
| 5 | nmlnoubi.3 | |- N = ( U normOpOLD W ) |
|
| 6 | nmlnoubi.7 | |- L = ( U LnOp W ) |
|
| 7 | nmlnoubi.u | |- U e. NrmCVec |
|
| 8 | nmlnoubi.w | |- W e. NrmCVec |
|
| 9 | 2fveq3 | |- ( x = Z -> ( M ` ( T ` x ) ) = ( M ` ( T ` Z ) ) ) |
|
| 10 | fveq2 | |- ( x = Z -> ( K ` x ) = ( K ` Z ) ) |
|
| 11 | 10 | oveq2d | |- ( x = Z -> ( A x. ( K ` x ) ) = ( A x. ( K ` Z ) ) ) |
| 12 | 9 11 | breq12d | |- ( x = Z -> ( ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) <-> ( M ` ( T ` Z ) ) <_ ( A x. ( K ` Z ) ) ) ) |
| 13 | id | |- ( ( x =/= Z -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) -> ( x =/= Z -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) ) |
|
| 14 | 13 | imp | |- ( ( ( x =/= Z -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) /\ x =/= Z ) -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) |
| 15 | 14 | adantll | |- ( ( ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) ) /\ ( x =/= Z -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) ) /\ x =/= Z ) -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) |
| 16 | 0le0 | |- 0 <_ 0 |
|
| 17 | eqid | |- ( BaseSet ` W ) = ( BaseSet ` W ) |
|
| 18 | eqid | |- ( 0vec ` W ) = ( 0vec ` W ) |
|
| 19 | 1 17 2 18 6 | lno0 | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> ( T ` Z ) = ( 0vec ` W ) ) |
| 20 | 7 8 19 | mp3an12 | |- ( T e. L -> ( T ` Z ) = ( 0vec ` W ) ) |
| 21 | 20 | fveq2d | |- ( T e. L -> ( M ` ( T ` Z ) ) = ( M ` ( 0vec ` W ) ) ) |
| 22 | 18 4 | nvz0 | |- ( W e. NrmCVec -> ( M ` ( 0vec ` W ) ) = 0 ) |
| 23 | 8 22 | ax-mp | |- ( M ` ( 0vec ` W ) ) = 0 |
| 24 | 21 23 | eqtrdi | |- ( T e. L -> ( M ` ( T ` Z ) ) = 0 ) |
| 25 | 24 | adantr | |- ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) ) -> ( M ` ( T ` Z ) ) = 0 ) |
| 26 | 2 3 | nvz0 | |- ( U e. NrmCVec -> ( K ` Z ) = 0 ) |
| 27 | 7 26 | ax-mp | |- ( K ` Z ) = 0 |
| 28 | 27 | oveq2i | |- ( A x. ( K ` Z ) ) = ( A x. 0 ) |
| 29 | recn | |- ( A e. RR -> A e. CC ) |
|
| 30 | 29 | mul01d | |- ( A e. RR -> ( A x. 0 ) = 0 ) |
| 31 | 28 30 | eqtrid | |- ( A e. RR -> ( A x. ( K ` Z ) ) = 0 ) |
| 32 | 31 | ad2antrl | |- ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) ) -> ( A x. ( K ` Z ) ) = 0 ) |
| 33 | 25 32 | breq12d | |- ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) ) -> ( ( M ` ( T ` Z ) ) <_ ( A x. ( K ` Z ) ) <-> 0 <_ 0 ) ) |
| 34 | 16 33 | mpbiri | |- ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) ) -> ( M ` ( T ` Z ) ) <_ ( A x. ( K ` Z ) ) ) |
| 35 | 34 | adantr | |- ( ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) ) /\ ( x =/= Z -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) ) -> ( M ` ( T ` Z ) ) <_ ( A x. ( K ` Z ) ) ) |
| 36 | 12 15 35 | pm2.61ne | |- ( ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) ) /\ ( x =/= Z -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) ) -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) |
| 37 | 36 | ex | |- ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) ) -> ( ( x =/= Z -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) ) |
| 38 | 37 | ralimdv | |- ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) ) -> ( A. x e. X ( x =/= Z -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) -> A. x e. X ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) ) |
| 39 | 38 | 3impia | |- ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) /\ A. x e. X ( x =/= Z -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) ) -> A. x e. X ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) |
| 40 | 1 17 6 | lnof | |- ( ( U e. NrmCVec /\ W e. NrmCVec /\ T e. L ) -> T : X --> ( BaseSet ` W ) ) |
| 41 | 7 8 40 | mp3an12 | |- ( T e. L -> T : X --> ( BaseSet ` W ) ) |
| 42 | 1 17 3 4 5 7 8 | nmoub2i | |- ( ( T : X --> ( BaseSet ` W ) /\ ( A e. RR /\ 0 <_ A ) /\ A. x e. X ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) -> ( N ` T ) <_ A ) |
| 43 | 41 42 | syl3an1 | |- ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) /\ A. x e. X ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) -> ( N ` T ) <_ A ) |
| 44 | 39 43 | syld3an3 | |- ( ( T e. L /\ ( A e. RR /\ 0 <_ A ) /\ A. x e. X ( x =/= Z -> ( M ` ( T ` x ) ) <_ ( A x. ( K ` x ) ) ) ) -> ( N ` T ) <_ A ) |