This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a normed group is a continuous function. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcn.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| nmcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| nmcn.k | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | ||
| Assertion | nmcn | ⊢ ( 𝐺 ∈ NrmGrp → 𝑁 ∈ ( 𝐽 Cn 𝐾 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcn.n | ⊢ 𝑁 = ( norm ‘ 𝐺 ) | |
| 2 | nmcn.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | nmcn.k | ⊢ 𝐾 = ( topGen ‘ ran (,) ) | |
| 4 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 5 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 6 | eqid | ⊢ ( dist ‘ 𝐺 ) = ( dist ‘ 𝐺 ) | |
| 7 | 1 4 5 6 | nmfval | ⊢ 𝑁 = ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) |
| 8 | ngpms | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ MetSp ) | |
| 9 | ngptps | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ TopSp ) | |
| 10 | 4 2 | istps | ⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 11 | 9 10 | sylib | ⊢ ( 𝐺 ∈ NrmGrp → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 12 | 11 | cnmptid | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ 𝑥 ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 13 | ngpgrp | ⊢ ( 𝐺 ∈ NrmGrp → 𝐺 ∈ Grp ) | |
| 14 | 4 5 | grpidcl | ⊢ ( 𝐺 ∈ Grp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 15 | 13 14 | syl | ⊢ ( 𝐺 ∈ NrmGrp → ( 0g ‘ 𝐺 ) ∈ ( Base ‘ 𝐺 ) ) |
| 16 | 11 11 15 | cnmptc | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 0g ‘ 𝐺 ) ) ∈ ( 𝐽 Cn 𝐽 ) ) |
| 17 | 6 2 3 8 11 12 16 | cnmpt1ds | ⊢ ( 𝐺 ∈ NrmGrp → ( 𝑥 ∈ ( Base ‘ 𝐺 ) ↦ ( 𝑥 ( dist ‘ 𝐺 ) ( 0g ‘ 𝐺 ) ) ) ∈ ( 𝐽 Cn 𝐾 ) ) |
| 18 | 7 17 | eqeltrid | ⊢ ( 𝐺 ∈ NrmGrp → 𝑁 ∈ ( 𝐽 Cn 𝐾 ) ) |