This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a normed group is a continuous function. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcn.n | |- N = ( norm ` G ) |
|
| nmcn.j | |- J = ( TopOpen ` G ) |
||
| nmcn.k | |- K = ( topGen ` ran (,) ) |
||
| Assertion | nmcn | |- ( G e. NrmGrp -> N e. ( J Cn K ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcn.n | |- N = ( norm ` G ) |
|
| 2 | nmcn.j | |- J = ( TopOpen ` G ) |
|
| 3 | nmcn.k | |- K = ( topGen ` ran (,) ) |
|
| 4 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | eqid | |- ( dist ` G ) = ( dist ` G ) |
|
| 7 | 1 4 5 6 | nmfval | |- N = ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) |
| 8 | ngpms | |- ( G e. NrmGrp -> G e. MetSp ) |
|
| 9 | ngptps | |- ( G e. NrmGrp -> G e. TopSp ) |
|
| 10 | 4 2 | istps | |- ( G e. TopSp <-> J e. ( TopOn ` ( Base ` G ) ) ) |
| 11 | 9 10 | sylib | |- ( G e. NrmGrp -> J e. ( TopOn ` ( Base ` G ) ) ) |
| 12 | 11 | cnmptid | |- ( G e. NrmGrp -> ( x e. ( Base ` G ) |-> x ) e. ( J Cn J ) ) |
| 13 | ngpgrp | |- ( G e. NrmGrp -> G e. Grp ) |
|
| 14 | 4 5 | grpidcl | |- ( G e. Grp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 15 | 13 14 | syl | |- ( G e. NrmGrp -> ( 0g ` G ) e. ( Base ` G ) ) |
| 16 | 11 11 15 | cnmptc | |- ( G e. NrmGrp -> ( x e. ( Base ` G ) |-> ( 0g ` G ) ) e. ( J Cn J ) ) |
| 17 | 6 2 3 8 11 12 16 | cnmpt1ds | |- ( G e. NrmGrp -> ( x e. ( Base ` G ) |-> ( x ( dist ` G ) ( 0g ` G ) ) ) e. ( J Cn K ) ) |
| 18 | 7 17 | eqeltrid | |- ( G e. NrmGrp -> N e. ( J Cn K ) ) |