This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of the metric function; analogue of cnmpt12f which cannot be used directly because D is not necessarily a function. (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cnmpt1ds.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| cnmpt1ds.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | ||
| cnmpt1ds.r | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | ||
| cnmpt1ds.g | ⊢ ( 𝜑 → 𝐺 ∈ MetSp ) | ||
| cnmpt1ds.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) | ||
| cnmpt1ds.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐽 ) ) | ||
| cnmpt1ds.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐽 ) ) | ||
| Assertion | cnmpt1ds | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐷 𝐵 ) ) ∈ ( 𝐾 Cn 𝑅 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnmpt1ds.d | ⊢ 𝐷 = ( dist ‘ 𝐺 ) | |
| 2 | cnmpt1ds.j | ⊢ 𝐽 = ( TopOpen ‘ 𝐺 ) | |
| 3 | cnmpt1ds.r | ⊢ 𝑅 = ( topGen ‘ ran (,) ) | |
| 4 | cnmpt1ds.g | ⊢ ( 𝜑 → 𝐺 ∈ MetSp ) | |
| 5 | cnmpt1ds.k | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 6 | cnmpt1ds.a | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 7 | cnmpt1ds.b | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐽 ) ) | |
| 8 | mstps | ⊢ ( 𝐺 ∈ MetSp → 𝐺 ∈ TopSp ) | |
| 9 | 4 8 | syl | ⊢ ( 𝜑 → 𝐺 ∈ TopSp ) |
| 10 | eqid | ⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) | |
| 11 | 10 2 | istps | ⊢ ( 𝐺 ∈ TopSp ↔ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 12 | 9 11 | sylib | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ) |
| 13 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) ∈ ( 𝐾 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝐺 ) ) | |
| 14 | 5 12 6 13 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐴 ) : 𝑋 ⟶ ( Base ‘ 𝐺 ) ) |
| 15 | 14 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 16 | cnf2 | ⊢ ( ( 𝐾 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐽 ∈ ( TopOn ‘ ( Base ‘ 𝐺 ) ) ∧ ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) ∈ ( 𝐾 Cn 𝐽 ) ) → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝐺 ) ) | |
| 17 | 5 12 7 16 | syl3anc | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ 𝐵 ) : 𝑋 ⟶ ( Base ‘ 𝐺 ) ) |
| 18 | 17 | fvmptelcdm | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐵 ∈ ( Base ‘ 𝐺 ) ) |
| 19 | 15 18 | ovresd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐴 ( 𝐷 ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝐵 ) = ( 𝐴 𝐷 𝐵 ) ) |
| 20 | 19 | mpteq2dva | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( 𝐷 ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝐵 ) ) = ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐷 𝐵 ) ) ) |
| 21 | 10 1 2 3 | msdcn | ⊢ ( 𝐺 ∈ MetSp → ( 𝐷 ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝑅 ) ) |
| 22 | 4 21 | syl | ⊢ ( 𝜑 → ( 𝐷 ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) ∈ ( ( 𝐽 ×t 𝐽 ) Cn 𝑅 ) ) |
| 23 | 5 6 7 22 | cnmpt12f | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 ( 𝐷 ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) 𝐵 ) ) ∈ ( 𝐾 Cn 𝑅 ) ) |
| 24 | 20 23 | eqeltrrd | ⊢ ( 𝜑 → ( 𝑥 ∈ 𝑋 ↦ ( 𝐴 𝐷 𝐵 ) ) ∈ ( 𝐾 Cn 𝑅 ) ) |