This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of a normed group is a continuous function. (Contributed by Mario Carneiro, 4-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmcn.n | ||
| nmcn.j | |||
| nmcn.k | |||
| Assertion | nmcn |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmcn.n | ||
| 2 | nmcn.j | ||
| 3 | nmcn.k | ||
| 4 | eqid | ||
| 5 | eqid | ||
| 6 | eqid | ||
| 7 | 1 4 5 6 | nmfval | |
| 8 | ngpms | ||
| 9 | ngptps | ||
| 10 | 4 2 | istps | |
| 11 | 9 10 | sylib | |
| 12 | 11 | cnmptid | |
| 13 | ngpgrp | ||
| 14 | 4 5 | grpidcl | |
| 15 | 13 14 | syl | |
| 16 | 11 11 15 | cnmptc | |
| 17 | 6 2 3 8 11 12 16 | cnmpt1ds | |
| 18 | 7 17 | eqeltrid |