This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a bounded linear functional. (Contributed by NM, 25-Apr-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmbdfnlb | ⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ∧ 𝐴 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ‘ 𝐴 ) = ( if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) = ( abs ‘ ( if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ) |
| 3 | fveq2 | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( normfn ‘ 𝑇 ) = ( normfn ‘ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ) ) | |
| 4 | 3 | oveq1d | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) = ( ( normfn ‘ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 5 | 2 4 | breq12d | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ↔ ( abs ‘ ( if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ≤ ( ( normfn ‘ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ↔ ( 𝐴 ∈ ℋ → ( abs ‘ ( if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ≤ ( ( normfn ‘ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) ) ) |
| 7 | eleq1 | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( 𝑇 ∈ LinFn ↔ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ) ) | |
| 8 | 3 | eleq1d | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( normfn ‘ 𝑇 ) ∈ ℝ ↔ ( normfn ‘ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ) ∈ ℝ ) ) |
| 9 | 7 8 | anbi12d | ⊢ ( 𝑇 = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) ↔ ( if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ∧ ( normfn ‘ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ) ∈ ℝ ) ) ) |
| 10 | eleq1 | ⊢ ( ( ℋ × { 0 } ) = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( ℋ × { 0 } ) ∈ LinFn ↔ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ) ) | |
| 11 | fveq2 | ⊢ ( ( ℋ × { 0 } ) = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( normfn ‘ ( ℋ × { 0 } ) ) = ( normfn ‘ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ) ) | |
| 12 | 11 | eleq1d | ⊢ ( ( ℋ × { 0 } ) = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( normfn ‘ ( ℋ × { 0 } ) ) ∈ ℝ ↔ ( normfn ‘ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ) ∈ ℝ ) ) |
| 13 | 10 12 | anbi12d | ⊢ ( ( ℋ × { 0 } ) = if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) → ( ( ( ℋ × { 0 } ) ∈ LinFn ∧ ( normfn ‘ ( ℋ × { 0 } ) ) ∈ ℝ ) ↔ ( if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ∧ ( normfn ‘ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ) ∈ ℝ ) ) ) |
| 14 | 0lnfn | ⊢ ( ℋ × { 0 } ) ∈ LinFn | |
| 15 | nmfn0 | ⊢ ( normfn ‘ ( ℋ × { 0 } ) ) = 0 | |
| 16 | 0re | ⊢ 0 ∈ ℝ | |
| 17 | 15 16 | eqeltri | ⊢ ( normfn ‘ ( ℋ × { 0 } ) ) ∈ ℝ |
| 18 | 14 17 | pm3.2i | ⊢ ( ( ℋ × { 0 } ) ∈ LinFn ∧ ( normfn ‘ ( ℋ × { 0 } ) ) ∈ ℝ ) |
| 19 | 9 13 18 | elimhyp | ⊢ ( if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ∈ LinFn ∧ ( normfn ‘ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ) ∈ ℝ ) |
| 20 | 19 | nmbdfnlbi | ⊢ ( 𝐴 ∈ ℋ → ( abs ‘ ( if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ‘ 𝐴 ) ) ≤ ( ( normfn ‘ if ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) , 𝑇 , ( ℋ × { 0 } ) ) ) · ( normℎ ‘ 𝐴 ) ) ) |
| 21 | 6 20 | dedth | ⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ) → ( 𝐴 ∈ ℋ → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) ) |
| 22 | 21 | 3impia | ⊢ ( ( 𝑇 ∈ LinFn ∧ ( normfn ‘ 𝑇 ) ∈ ℝ ∧ 𝐴 ∈ ℋ ) → ( abs ‘ ( 𝑇 ‘ 𝐴 ) ) ≤ ( ( normfn ‘ 𝑇 ) · ( normℎ ‘ 𝐴 ) ) ) |