This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The predicate " W is a topological left module". (Contributed by Mario Carneiro, 5-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | istlm.s | ⊢ · = ( ·sf ‘ 𝑊 ) | |
| istlm.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | ||
| istlm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | ||
| istlm.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐹 ) | ||
| Assertion | istlm | ⊢ ( 𝑊 ∈ TopMod ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | istlm.s | ⊢ · = ( ·sf ‘ 𝑊 ) | |
| 2 | istlm.j | ⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) | |
| 3 | istlm.f | ⊢ 𝐹 = ( Scalar ‘ 𝑊 ) | |
| 4 | istlm.k | ⊢ 𝐾 = ( TopOpen ‘ 𝐹 ) | |
| 5 | anass | ⊢ ( ( ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ 𝐹 ∈ TopRing ) ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ↔ ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ ( 𝐹 ∈ TopRing ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) ) | |
| 6 | df-3an | ⊢ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ) ∧ 𝐹 ∈ TopRing ) ) | |
| 7 | elin | ⊢ ( 𝑊 ∈ ( TopMnd ∩ LMod ) ↔ ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ) ) | |
| 8 | 7 | anbi1i | ⊢ ( ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ 𝐹 ∈ TopRing ) ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ) ∧ 𝐹 ∈ TopRing ) ) |
| 9 | 6 8 | bitr4i | ⊢ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ↔ ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ 𝐹 ∈ TopRing ) ) |
| 10 | 9 | anbi1i | ⊢ ( ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ↔ ( ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ 𝐹 ∈ TopRing ) ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| 11 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = ( Scalar ‘ 𝑊 ) ) | |
| 12 | 11 3 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( Scalar ‘ 𝑤 ) = 𝐹 ) |
| 13 | 12 | eleq1d | ⊢ ( 𝑤 = 𝑊 → ( ( Scalar ‘ 𝑤 ) ∈ TopRing ↔ 𝐹 ∈ TopRing ) ) |
| 14 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ·sf ‘ 𝑤 ) = ( ·sf ‘ 𝑊 ) ) | |
| 15 | 14 1 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( ·sf ‘ 𝑤 ) = · ) |
| 16 | 12 | fveq2d | ⊢ ( 𝑤 = 𝑊 → ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) = ( TopOpen ‘ 𝐹 ) ) |
| 17 | 16 4 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) = 𝐾 ) |
| 18 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( TopOpen ‘ 𝑤 ) = ( TopOpen ‘ 𝑊 ) ) | |
| 19 | 18 2 | eqtr4di | ⊢ ( 𝑤 = 𝑊 → ( TopOpen ‘ 𝑤 ) = 𝐽 ) |
| 20 | 17 19 | oveq12d | ⊢ ( 𝑤 = 𝑊 → ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) = ( 𝐾 ×t 𝐽 ) ) |
| 21 | 20 19 | oveq12d | ⊢ ( 𝑤 = 𝑊 → ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) = ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) |
| 22 | 15 21 | eleq12d | ⊢ ( 𝑤 = 𝑊 → ( ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ↔ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) |
| 23 | 13 22 | anbi12d | ⊢ ( 𝑤 = 𝑊 → ( ( ( Scalar ‘ 𝑤 ) ∈ TopRing ∧ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ) ↔ ( 𝐹 ∈ TopRing ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) ) |
| 24 | df-tlm | ⊢ TopMod = { 𝑤 ∈ ( TopMnd ∩ LMod ) ∣ ( ( Scalar ‘ 𝑤 ) ∈ TopRing ∧ ( ·sf ‘ 𝑤 ) ∈ ( ( ( TopOpen ‘ ( Scalar ‘ 𝑤 ) ) ×t ( TopOpen ‘ 𝑤 ) ) Cn ( TopOpen ‘ 𝑤 ) ) ) } | |
| 25 | 23 24 | elrab2 | ⊢ ( 𝑊 ∈ TopMod ↔ ( 𝑊 ∈ ( TopMnd ∩ LMod ) ∧ ( 𝐹 ∈ TopRing ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) ) |
| 26 | 5 10 25 | 3bitr4ri | ⊢ ( 𝑊 ∈ TopMod ↔ ( ( 𝑊 ∈ TopMnd ∧ 𝑊 ∈ LMod ∧ 𝐹 ∈ TopRing ) ∧ · ∈ ( ( 𝐾 ×t 𝐽 ) Cn 𝐽 ) ) ) |