This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Continuity of a two-argument function at a point. (Contributed by Mario Carneiro, 20-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | txcnpi.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| txcnpi.2 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | ||
| txcnpi.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) | ||
| txcnpi.4 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐿 ) | ||
| txcnpi.5 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | ||
| txcnpi.6 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | ||
| txcnpi.7 | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝑈 ) | ||
| Assertion | txcnpi | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | txcnpi.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | txcnpi.2 | ⊢ ( 𝜑 → 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) | |
| 3 | txcnpi.3 | ⊢ ( 𝜑 → 𝐹 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ) | |
| 4 | txcnpi.4 | ⊢ ( 𝜑 → 𝑈 ∈ 𝐿 ) | |
| 5 | txcnpi.5 | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) | |
| 6 | txcnpi.6 | ⊢ ( 𝜑 → 𝐵 ∈ 𝑌 ) | |
| 7 | txcnpi.7 | ⊢ ( 𝜑 → ( 𝐴 𝐹 𝐵 ) ∈ 𝑈 ) | |
| 8 | df-ov | ⊢ ( 𝐴 𝐹 𝐵 ) = ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) | |
| 9 | 8 7 | eqeltrrid | ⊢ ( 𝜑 → ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ 𝑈 ) |
| 10 | cnpimaex | ⊢ ( ( 𝐹 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) ∧ 𝑈 ∈ 𝐿 ∧ ( 𝐹 ‘ 〈 𝐴 , 𝐵 〉 ) ∈ 𝑈 ) → ∃ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ) ) | |
| 11 | 3 4 9 10 | syl3anc | ⊢ ( 𝜑 → ∃ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ) ) |
| 12 | eqid | ⊢ ∪ ( 𝐽 ×t 𝐾 ) = ∪ ( 𝐽 ×t 𝐾 ) | |
| 13 | eqid | ⊢ ∪ 𝐿 = ∪ 𝐿 | |
| 14 | 12 13 | cnpf | ⊢ ( 𝐹 ∈ ( ( ( 𝐽 ×t 𝐾 ) CnP 𝐿 ) ‘ 〈 𝐴 , 𝐵 〉 ) → 𝐹 : ∪ ( 𝐽 ×t 𝐾 ) ⟶ ∪ 𝐿 ) |
| 15 | 3 14 | syl | ⊢ ( 𝜑 → 𝐹 : ∪ ( 𝐽 ×t 𝐾 ) ⟶ ∪ 𝐿 ) |
| 16 | 15 | adantr | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → 𝐹 : ∪ ( 𝐽 ×t 𝐾 ) ⟶ ∪ 𝐿 ) |
| 17 | 16 | ffund | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → Fun 𝐹 ) |
| 18 | elssuni | ⊢ ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) → 𝑤 ⊆ ∪ ( 𝐽 ×t 𝐾 ) ) | |
| 19 | 15 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = ∪ ( 𝐽 ×t 𝐾 ) ) |
| 20 | 19 | sseq2d | ⊢ ( 𝜑 → ( 𝑤 ⊆ dom 𝐹 ↔ 𝑤 ⊆ ∪ ( 𝐽 ×t 𝐾 ) ) ) |
| 21 | 20 | biimpar | ⊢ ( ( 𝜑 ∧ 𝑤 ⊆ ∪ ( 𝐽 ×t 𝐾 ) ) → 𝑤 ⊆ dom 𝐹 ) |
| 22 | 18 21 | sylan2 | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → 𝑤 ⊆ dom 𝐹 ) |
| 23 | funimass3 | ⊢ ( ( Fun 𝐹 ∧ 𝑤 ⊆ dom 𝐹 ) → ( ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ↔ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) | |
| 24 | 17 22 23 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ↔ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) |
| 25 | 24 | anbi2d | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 26 | eltx | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐾 ∈ ( TopOn ‘ 𝑌 ) ) → ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ↔ ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) | |
| 27 | 1 2 26 | syl2anc | ⊢ ( 𝜑 → ( 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ↔ ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
| 28 | 27 | biimpa | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) |
| 29 | eleq1 | ⊢ ( 𝑧 = 〈 𝐴 , 𝐵 〉 → ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ↔ 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ) ) | |
| 30 | 29 | anbi1d | ⊢ ( 𝑧 = 〈 𝐴 , 𝐵 〉 → ( ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ↔ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
| 31 | 30 | 2rexbidv | ⊢ ( 𝑧 = 〈 𝐴 , 𝐵 〉 → ( ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ↔ ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
| 32 | 31 | rspccv | ⊢ ( ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) ) |
| 33 | sstr2 | ⊢ ( ( 𝑢 × 𝑣 ) ⊆ 𝑤 → ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) | |
| 34 | 33 | com12 | ⊢ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( ( 𝑢 × 𝑣 ) ⊆ 𝑤 → ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) |
| 35 | 34 | anim2d | ⊢ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( ( ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 36 | opelxp | ⊢ ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ↔ ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ) ) | |
| 37 | 36 | anbi1i | ⊢ ( ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ↔ ( ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) ) |
| 38 | df-3an | ⊢ ( ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ↔ ( ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) | |
| 39 | 35 37 38 | 3imtr4g | ⊢ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 40 | 39 | reximdv | ⊢ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( ∃ 𝑣 ∈ 𝐾 ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 41 | 40 | reximdv | ⊢ ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ( ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 42 | 41 | com12 | ⊢ ( ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 〈 𝐴 , 𝐵 〉 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 43 | 32 42 | syl6 | ⊢ ( ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 → ( 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) ) |
| 44 | 43 | impd | ⊢ ( ∀ 𝑧 ∈ 𝑤 ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝑧 ∈ ( 𝑢 × 𝑣 ) ∧ ( 𝑢 × 𝑣 ) ⊆ 𝑤 ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 45 | 28 44 | syl | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ 𝑤 ⊆ ( ◡ 𝐹 “ 𝑈 ) ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 46 | 25 45 | sylbid | ⊢ ( ( 𝜑 ∧ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ) → ( ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 47 | 46 | rexlimdva | ⊢ ( 𝜑 → ( ∃ 𝑤 ∈ ( 𝐽 ×t 𝐾 ) ( 〈 𝐴 , 𝐵 〉 ∈ 𝑤 ∧ ( 𝐹 “ 𝑤 ) ⊆ 𝑈 ) → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) ) |
| 48 | 11 47 | mpd | ⊢ ( 𝜑 → ∃ 𝑢 ∈ 𝐽 ∃ 𝑣 ∈ 𝐾 ( 𝐴 ∈ 𝑢 ∧ 𝐵 ∈ 𝑣 ∧ ( 𝑢 × 𝑣 ) ⊆ ( ◡ 𝐹 “ 𝑈 ) ) ) |