This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of negcncf as of 9-Apr-2025. (Contributed by Mario Carneiro, 30-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negcncfOLD.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ - 𝑥 ) | |
| Assertion | negcncfOLD | ⊢ ( 𝐴 ⊆ ℂ → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcncfOLD.1 | ⊢ 𝐹 = ( 𝑥 ∈ 𝐴 ↦ - 𝑥 ) | |
| 2 | ssel2 | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) → 𝑥 ∈ ℂ ) | |
| 3 | 2 | mulm1d | ⊢ ( ( 𝐴 ⊆ ℂ ∧ 𝑥 ∈ 𝐴 ) → ( - 1 · 𝑥 ) = - 𝑥 ) |
| 4 | 3 | mpteq2dva | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑥 ∈ 𝐴 ↦ ( - 1 · 𝑥 ) ) = ( 𝑥 ∈ 𝐴 ↦ - 𝑥 ) ) |
| 5 | 4 1 | eqtr4di | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑥 ∈ 𝐴 ↦ ( - 1 · 𝑥 ) ) = 𝐹 ) |
| 6 | eqid | ⊢ ( TopOpen ‘ ℂfld ) = ( TopOpen ‘ ℂfld ) | |
| 7 | 6 | mulcn | ⊢ · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) |
| 8 | 7 | a1i | ⊢ ( 𝐴 ⊆ ℂ → · ∈ ( ( ( TopOpen ‘ ℂfld ) ×t ( TopOpen ‘ ℂfld ) ) Cn ( TopOpen ‘ ℂfld ) ) ) |
| 9 | neg1cn | ⊢ - 1 ∈ ℂ | |
| 10 | ssid | ⊢ ℂ ⊆ ℂ | |
| 11 | cncfmptc | ⊢ ( ( - 1 ∈ ℂ ∧ 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ - 1 ) ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 12 | 9 10 11 | mp3an13 | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑥 ∈ 𝐴 ↦ - 1 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 13 | cncfmptid | ⊢ ( ( 𝐴 ⊆ ℂ ∧ ℂ ⊆ ℂ ) → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ ℂ ) ) | |
| 14 | 10 13 | mpan2 | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑥 ∈ 𝐴 ↦ 𝑥 ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 15 | 6 8 12 14 | cncfmpt2f | ⊢ ( 𝐴 ⊆ ℂ → ( 𝑥 ∈ 𝐴 ↦ ( - 1 · 𝑥 ) ) ∈ ( 𝐴 –cn→ ℂ ) ) |
| 16 | 5 15 | eqeltrrd | ⊢ ( 𝐴 ⊆ ℂ → 𝐹 ∈ ( 𝐴 –cn→ ℂ ) ) |