This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of negcncf as of 9-Apr-2025. (Contributed by Mario Carneiro, 30-Dec-2016) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | negcncfOLD.1 | |- F = ( x e. A |-> -u x ) |
|
| Assertion | negcncfOLD | |- ( A C_ CC -> F e. ( A -cn-> CC ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | negcncfOLD.1 | |- F = ( x e. A |-> -u x ) |
|
| 2 | ssel2 | |- ( ( A C_ CC /\ x e. A ) -> x e. CC ) |
|
| 3 | 2 | mulm1d | |- ( ( A C_ CC /\ x e. A ) -> ( -u 1 x. x ) = -u x ) |
| 4 | 3 | mpteq2dva | |- ( A C_ CC -> ( x e. A |-> ( -u 1 x. x ) ) = ( x e. A |-> -u x ) ) |
| 5 | 4 1 | eqtr4di | |- ( A C_ CC -> ( x e. A |-> ( -u 1 x. x ) ) = F ) |
| 6 | eqid | |- ( TopOpen ` CCfld ) = ( TopOpen ` CCfld ) |
|
| 7 | 6 | mulcn | |- x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) |
| 8 | 7 | a1i | |- ( A C_ CC -> x. e. ( ( ( TopOpen ` CCfld ) tX ( TopOpen ` CCfld ) ) Cn ( TopOpen ` CCfld ) ) ) |
| 9 | neg1cn | |- -u 1 e. CC |
|
| 10 | ssid | |- CC C_ CC |
|
| 11 | cncfmptc | |- ( ( -u 1 e. CC /\ A C_ CC /\ CC C_ CC ) -> ( x e. A |-> -u 1 ) e. ( A -cn-> CC ) ) |
|
| 12 | 9 10 11 | mp3an13 | |- ( A C_ CC -> ( x e. A |-> -u 1 ) e. ( A -cn-> CC ) ) |
| 13 | cncfmptid | |- ( ( A C_ CC /\ CC C_ CC ) -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
|
| 14 | 10 13 | mpan2 | |- ( A C_ CC -> ( x e. A |-> x ) e. ( A -cn-> CC ) ) |
| 15 | 6 8 12 14 | cncfmpt2f | |- ( A C_ CC -> ( x e. A |-> ( -u 1 x. x ) ) e. ( A -cn-> CC ) ) |
| 16 | 5 15 | eqeltrrd | |- ( A C_ CC -> F e. ( A -cn-> CC ) ) |