This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighborhood of a vertex in a restricted pseudograph (not necessarily valid for a hypergraph, because N , K and M could be connected by one edge, so M is a neighbor of K in the original graph, but not in the restricted graph, because the edge between M and K , also incident with N , was removed). (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 8-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbupgrres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbupgrres.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| nbupgrres.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | ||
| nbupgrres.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 | ||
| Assertion | nbupgrres | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) → 𝑀 ∈ ( 𝑆 NeighbVtx 𝐾 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbupgrres.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbupgrres.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | nbupgrres.f | ⊢ 𝐹 = { 𝑒 ∈ 𝐸 ∣ 𝑁 ∉ 𝑒 } | |
| 4 | nbupgrres.s | ⊢ 𝑆 = 〈 ( 𝑉 ∖ { 𝑁 } ) , ( I ↾ 𝐹 ) 〉 | |
| 5 | simp1l | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝐺 ∈ UPGraph ) | |
| 6 | eldifi | ⊢ ( 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝐾 ∈ 𝑉 ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝐾 ∈ 𝑉 ) |
| 8 | eldifsn | ⊢ ( 𝑀 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) ↔ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) | |
| 9 | eldifi | ⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑀 ∈ 𝑉 ) | |
| 10 | 9 | anim1i | ⊢ ( ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) → ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝐾 ) ) |
| 11 | 8 10 | sylbi | ⊢ ( 𝑀 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) → ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝐾 ) ) |
| 12 | difpr | ⊢ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) = ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) | |
| 13 | 11 12 | eleq2s | ⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) → ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝐾 ) ) |
| 14 | 13 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝐾 ) ) |
| 15 | 1 2 | nbupgrel | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝐾 ) ) → ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ { 𝑀 , 𝐾 } ∈ 𝐸 ) ) |
| 16 | 5 7 14 15 | syl21anc | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ { 𝑀 , 𝐾 } ∈ 𝐸 ) ) |
| 17 | 16 | biimpa | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → { 𝑀 , 𝐾 } ∈ 𝐸 ) |
| 18 | 12 | eleq2i | ⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ↔ 𝑀 ∈ ( ( 𝑉 ∖ { 𝑁 } ) ∖ { 𝐾 } ) ) |
| 19 | eldifsn | ⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) ) | |
| 20 | 19 | anbi1i | ⊢ ( ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) ∧ 𝑀 ≠ 𝐾 ) ) |
| 21 | 18 8 20 | 3bitri | ⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ↔ ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) ∧ 𝑀 ≠ 𝐾 ) ) |
| 22 | simpr | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) → 𝑀 ≠ 𝑁 ) | |
| 23 | 22 | necomd | ⊢ ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) → 𝑁 ≠ 𝑀 ) |
| 24 | 23 | adantr | ⊢ ( ( ( 𝑀 ∈ 𝑉 ∧ 𝑀 ≠ 𝑁 ) ∧ 𝑀 ≠ 𝐾 ) → 𝑁 ≠ 𝑀 ) |
| 25 | 21 24 | sylbi | ⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) → 𝑁 ≠ 𝑀 ) |
| 26 | 25 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝑁 ≠ 𝑀 ) |
| 27 | eldifsn | ⊢ ( 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ↔ ( 𝐾 ∈ 𝑉 ∧ 𝐾 ≠ 𝑁 ) ) | |
| 28 | simpr | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐾 ≠ 𝑁 ) → 𝐾 ≠ 𝑁 ) | |
| 29 | 28 | necomd | ⊢ ( ( 𝐾 ∈ 𝑉 ∧ 𝐾 ≠ 𝑁 ) → 𝑁 ≠ 𝐾 ) |
| 30 | 27 29 | sylbi | ⊢ ( 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) → 𝑁 ≠ 𝐾 ) |
| 31 | 30 | 3ad2ant2 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝑁 ≠ 𝐾 ) |
| 32 | 26 31 | nelprd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ¬ 𝑁 ∈ { 𝑀 , 𝐾 } ) |
| 33 | df-nel | ⊢ ( 𝑁 ∉ { 𝑀 , 𝐾 } ↔ ¬ 𝑁 ∈ { 𝑀 , 𝐾 } ) | |
| 34 | 32 33 | sylibr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝑁 ∉ { 𝑀 , 𝐾 } ) |
| 35 | 34 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → 𝑁 ∉ { 𝑀 , 𝐾 } ) |
| 36 | neleq2 | ⊢ ( 𝑒 = { 𝑀 , 𝐾 } → ( 𝑁 ∉ 𝑒 ↔ 𝑁 ∉ { 𝑀 , 𝐾 } ) ) | |
| 37 | 36 3 | elrab2 | ⊢ ( { 𝑀 , 𝐾 } ∈ 𝐹 ↔ ( { 𝑀 , 𝐾 } ∈ 𝐸 ∧ 𝑁 ∉ { 𝑀 , 𝐾 } ) ) |
| 38 | 17 35 37 | sylanbrc | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → { 𝑀 , 𝐾 } ∈ 𝐹 ) |
| 39 | 1 2 3 4 | upgrres1 | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) → 𝑆 ∈ UPGraph ) |
| 40 | 39 | 3ad2ant1 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝑆 ∈ UPGraph ) |
| 41 | simp2 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) | |
| 42 | 18 8 | sylbb | ⊢ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) → ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) |
| 43 | 42 | 3ad2ant3 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) |
| 44 | 40 41 43 | jca31 | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( ( 𝑆 ∈ UPGraph ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) ) |
| 45 | 44 | adantr | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → ( ( 𝑆 ∈ UPGraph ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) ) |
| 46 | 1 2 3 4 | upgrres1lem2 | ⊢ ( Vtx ‘ 𝑆 ) = ( 𝑉 ∖ { 𝑁 } ) |
| 47 | 46 | eqcomi | ⊢ ( 𝑉 ∖ { 𝑁 } ) = ( Vtx ‘ 𝑆 ) |
| 48 | edgval | ⊢ ( Edg ‘ 𝑆 ) = ran ( iEdg ‘ 𝑆 ) | |
| 49 | 1 2 3 4 | upgrres1lem3 | ⊢ ( iEdg ‘ 𝑆 ) = ( I ↾ 𝐹 ) |
| 50 | 49 | rneqi | ⊢ ran ( iEdg ‘ 𝑆 ) = ran ( I ↾ 𝐹 ) |
| 51 | rnresi | ⊢ ran ( I ↾ 𝐹 ) = 𝐹 | |
| 52 | 48 50 51 | 3eqtrri | ⊢ 𝐹 = ( Edg ‘ 𝑆 ) |
| 53 | 47 52 | nbupgrel | ⊢ ( ( ( 𝑆 ∈ UPGraph ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ) ∧ ( 𝑀 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ≠ 𝐾 ) ) → ( 𝑀 ∈ ( 𝑆 NeighbVtx 𝐾 ) ↔ { 𝑀 , 𝐾 } ∈ 𝐹 ) ) |
| 54 | 45 53 | syl | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → ( 𝑀 ∈ ( 𝑆 NeighbVtx 𝐾 ) ↔ { 𝑀 , 𝐾 } ∈ 𝐹 ) ) |
| 55 | 38 54 | mpbird | ⊢ ( ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) ∧ 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → 𝑀 ∈ ( 𝑆 NeighbVtx 𝐾 ) ) |
| 56 | 55 | ex | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝑁 ∈ 𝑉 ) ∧ 𝐾 ∈ ( 𝑉 ∖ { 𝑁 } ) ∧ 𝑀 ∈ ( 𝑉 ∖ { 𝑁 , 𝐾 } ) ) → ( 𝑀 ∈ ( 𝐺 NeighbVtx 𝐾 ) → 𝑀 ∈ ( 𝑆 NeighbVtx 𝐾 ) ) ) |