This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Applying the edge function on the converse edge function applied on a pair of a vertex and one of its neighbors is this pair in a simple graph. (Contributed by Alexander van der Vekens, 18-Dec-2017) (Revised by AV, 27-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | usgrnbcnvfv.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| Assertion | usgrnbcnvfv | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ { 𝐾 , 𝑁 } ) ) = { 𝐾 , 𝑁 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | usgrnbcnvfv.i | ⊢ 𝐼 = ( iEdg ‘ 𝐺 ) | |
| 2 | 1 | usgrf1o | ⊢ ( 𝐺 ∈ USGraph → 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ) |
| 3 | prcom | ⊢ { 𝑁 , 𝐾 } = { 𝐾 , 𝑁 } | |
| 4 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 5 | 4 | nbusgreledg | ⊢ ( 𝐺 ∈ USGraph → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ { 𝑁 , 𝐾 } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 6 | edgval | ⊢ ( Edg ‘ 𝐺 ) = ran ( iEdg ‘ 𝐺 ) | |
| 7 | 1 | eqcomi | ⊢ ( iEdg ‘ 𝐺 ) = 𝐼 |
| 8 | 7 | rneqi | ⊢ ran ( iEdg ‘ 𝐺 ) = ran 𝐼 |
| 9 | 6 8 | eqtri | ⊢ ( Edg ‘ 𝐺 ) = ran 𝐼 |
| 10 | 9 | a1i | ⊢ ( 𝐺 ∈ USGraph → ( Edg ‘ 𝐺 ) = ran 𝐼 ) |
| 11 | 10 | eleq2d | ⊢ ( 𝐺 ∈ USGraph → ( { 𝑁 , 𝐾 } ∈ ( Edg ‘ 𝐺 ) ↔ { 𝑁 , 𝐾 } ∈ ran 𝐼 ) ) |
| 12 | 5 11 | bitrd | ⊢ ( 𝐺 ∈ USGraph → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ { 𝑁 , 𝐾 } ∈ ran 𝐼 ) ) |
| 13 | 12 | biimpa | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → { 𝑁 , 𝐾 } ∈ ran 𝐼 ) |
| 14 | 3 13 | eqeltrrid | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → { 𝐾 , 𝑁 } ∈ ran 𝐼 ) |
| 15 | f1ocnvfv2 | ⊢ ( ( 𝐼 : dom 𝐼 –1-1-onto→ ran 𝐼 ∧ { 𝐾 , 𝑁 } ∈ ran 𝐼 ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ { 𝐾 , 𝑁 } ) ) = { 𝐾 , 𝑁 } ) | |
| 16 | 2 14 15 | syl2an2r | ⊢ ( ( 𝐺 ∈ USGraph ∧ 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ) → ( 𝐼 ‘ ( ◡ 𝐼 ‘ { 𝐾 , 𝑁 } ) ) = { 𝐾 , 𝑁 } ) |