This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A neighbor of a vertex in a pseudograph. (Contributed by AV, 5-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| nbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | nbupgrel | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾 ) ) → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbuhgr.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | nbuhgr.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | nbupgr | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) → ( 𝐺 NeighbVtx 𝐾 ) = { 𝑛 ∈ ( 𝑉 ∖ { 𝐾 } ) ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) |
| 4 | 3 | eleq2d | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ 𝑁 ∈ { 𝑛 ∈ ( 𝑉 ∖ { 𝐾 } ) ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ) ) |
| 5 | preq2 | ⊢ ( 𝑛 = 𝑁 → { 𝐾 , 𝑛 } = { 𝐾 , 𝑁 } ) | |
| 6 | 5 | eleq1d | ⊢ ( 𝑛 = 𝑁 → ( { 𝐾 , 𝑛 } ∈ 𝐸 ↔ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) |
| 7 | 6 | elrab | ⊢ ( 𝑁 ∈ { 𝑛 ∈ ( 𝑉 ∖ { 𝐾 } ) ∣ { 𝐾 , 𝑛 } ∈ 𝐸 } ↔ ( 𝑁 ∈ ( 𝑉 ∖ { 𝐾 } ) ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) |
| 8 | 4 7 | bitrdi | ⊢ ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ ( 𝑁 ∈ ( 𝑉 ∖ { 𝐾 } ) ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ) |
| 9 | 8 | adantr | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾 ) ) → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ ( 𝑁 ∈ ( 𝑉 ∖ { 𝐾 } ) ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ) |
| 10 | eldifsn | ⊢ ( 𝑁 ∈ ( 𝑉 ∖ { 𝐾 } ) ↔ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾 ) ) | |
| 11 | 10 | biimpri | ⊢ ( ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾 ) → 𝑁 ∈ ( 𝑉 ∖ { 𝐾 } ) ) |
| 12 | 11 | adantl | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾 ) ) → 𝑁 ∈ ( 𝑉 ∖ { 𝐾 } ) ) |
| 13 | 12 | biantrurd | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾 ) ) → ( { 𝐾 , 𝑁 } ∈ 𝐸 ↔ ( 𝑁 ∈ ( 𝑉 ∖ { 𝐾 } ) ∧ { 𝐾 , 𝑁 } ∈ 𝐸 ) ) ) |
| 14 | prcom | ⊢ { 𝐾 , 𝑁 } = { 𝑁 , 𝐾 } | |
| 15 | 14 | eleq1i | ⊢ ( { 𝐾 , 𝑁 } ∈ 𝐸 ↔ { 𝑁 , 𝐾 } ∈ 𝐸 ) |
| 16 | 15 | a1i | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾 ) ) → ( { 𝐾 , 𝑁 } ∈ 𝐸 ↔ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) |
| 17 | 9 13 16 | 3bitr2d | ⊢ ( ( ( 𝐺 ∈ UPGraph ∧ 𝐾 ∈ 𝑉 ) ∧ ( 𝑁 ∈ 𝑉 ∧ 𝑁 ≠ 𝐾 ) ) → ( 𝑁 ∈ ( 𝐺 NeighbVtx 𝐾 ) ↔ { 𝑁 , 𝐾 } ∈ 𝐸 ) ) |