This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The neighborhood of a vertex in a restricted pseudograph (not necessarily valid for a hypergraph, because N , K and M could be connected by one edge, so M is a neighbor of K in the original graph, but not in the restricted graph, because the edge between M and K , also incident with N , was removed). (Contributed by Alexander van der Vekens, 2-Jan-2018) (Revised by AV, 8-Nov-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nbupgrres.v | |- V = ( Vtx ` G ) |
|
| nbupgrres.e | |- E = ( Edg ` G ) |
||
| nbupgrres.f | |- F = { e e. E | N e/ e } |
||
| nbupgrres.s | |- S = <. ( V \ { N } ) , ( _I |` F ) >. |
||
| Assertion | nbupgrres | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> ( M e. ( G NeighbVtx K ) -> M e. ( S NeighbVtx K ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nbupgrres.v | |- V = ( Vtx ` G ) |
|
| 2 | nbupgrres.e | |- E = ( Edg ` G ) |
|
| 3 | nbupgrres.f | |- F = { e e. E | N e/ e } |
|
| 4 | nbupgrres.s | |- S = <. ( V \ { N } ) , ( _I |` F ) >. |
|
| 5 | simp1l | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> G e. UPGraph ) |
|
| 6 | eldifi | |- ( K e. ( V \ { N } ) -> K e. V ) |
|
| 7 | 6 | 3ad2ant2 | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> K e. V ) |
| 8 | eldifsn | |- ( M e. ( ( V \ { N } ) \ { K } ) <-> ( M e. ( V \ { N } ) /\ M =/= K ) ) |
|
| 9 | eldifi | |- ( M e. ( V \ { N } ) -> M e. V ) |
|
| 10 | 9 | anim1i | |- ( ( M e. ( V \ { N } ) /\ M =/= K ) -> ( M e. V /\ M =/= K ) ) |
| 11 | 8 10 | sylbi | |- ( M e. ( ( V \ { N } ) \ { K } ) -> ( M e. V /\ M =/= K ) ) |
| 12 | difpr | |- ( V \ { N , K } ) = ( ( V \ { N } ) \ { K } ) |
|
| 13 | 11 12 | eleq2s | |- ( M e. ( V \ { N , K } ) -> ( M e. V /\ M =/= K ) ) |
| 14 | 13 | 3ad2ant3 | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> ( M e. V /\ M =/= K ) ) |
| 15 | 1 2 | nbupgrel | |- ( ( ( G e. UPGraph /\ K e. V ) /\ ( M e. V /\ M =/= K ) ) -> ( M e. ( G NeighbVtx K ) <-> { M , K } e. E ) ) |
| 16 | 5 7 14 15 | syl21anc | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> ( M e. ( G NeighbVtx K ) <-> { M , K } e. E ) ) |
| 17 | 16 | biimpa | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) /\ M e. ( G NeighbVtx K ) ) -> { M , K } e. E ) |
| 18 | 12 | eleq2i | |- ( M e. ( V \ { N , K } ) <-> M e. ( ( V \ { N } ) \ { K } ) ) |
| 19 | eldifsn | |- ( M e. ( V \ { N } ) <-> ( M e. V /\ M =/= N ) ) |
|
| 20 | 19 | anbi1i | |- ( ( M e. ( V \ { N } ) /\ M =/= K ) <-> ( ( M e. V /\ M =/= N ) /\ M =/= K ) ) |
| 21 | 18 8 20 | 3bitri | |- ( M e. ( V \ { N , K } ) <-> ( ( M e. V /\ M =/= N ) /\ M =/= K ) ) |
| 22 | simpr | |- ( ( M e. V /\ M =/= N ) -> M =/= N ) |
|
| 23 | 22 | necomd | |- ( ( M e. V /\ M =/= N ) -> N =/= M ) |
| 24 | 23 | adantr | |- ( ( ( M e. V /\ M =/= N ) /\ M =/= K ) -> N =/= M ) |
| 25 | 21 24 | sylbi | |- ( M e. ( V \ { N , K } ) -> N =/= M ) |
| 26 | 25 | 3ad2ant3 | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> N =/= M ) |
| 27 | eldifsn | |- ( K e. ( V \ { N } ) <-> ( K e. V /\ K =/= N ) ) |
|
| 28 | simpr | |- ( ( K e. V /\ K =/= N ) -> K =/= N ) |
|
| 29 | 28 | necomd | |- ( ( K e. V /\ K =/= N ) -> N =/= K ) |
| 30 | 27 29 | sylbi | |- ( K e. ( V \ { N } ) -> N =/= K ) |
| 31 | 30 | 3ad2ant2 | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> N =/= K ) |
| 32 | 26 31 | nelprd | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> -. N e. { M , K } ) |
| 33 | df-nel | |- ( N e/ { M , K } <-> -. N e. { M , K } ) |
|
| 34 | 32 33 | sylibr | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> N e/ { M , K } ) |
| 35 | 34 | adantr | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) /\ M e. ( G NeighbVtx K ) ) -> N e/ { M , K } ) |
| 36 | neleq2 | |- ( e = { M , K } -> ( N e/ e <-> N e/ { M , K } ) ) |
|
| 37 | 36 3 | elrab2 | |- ( { M , K } e. F <-> ( { M , K } e. E /\ N e/ { M , K } ) ) |
| 38 | 17 35 37 | sylanbrc | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) /\ M e. ( G NeighbVtx K ) ) -> { M , K } e. F ) |
| 39 | 1 2 3 4 | upgrres1 | |- ( ( G e. UPGraph /\ N e. V ) -> S e. UPGraph ) |
| 40 | 39 | 3ad2ant1 | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> S e. UPGraph ) |
| 41 | simp2 | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> K e. ( V \ { N } ) ) |
|
| 42 | 18 8 | sylbb | |- ( M e. ( V \ { N , K } ) -> ( M e. ( V \ { N } ) /\ M =/= K ) ) |
| 43 | 42 | 3ad2ant3 | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> ( M e. ( V \ { N } ) /\ M =/= K ) ) |
| 44 | 40 41 43 | jca31 | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> ( ( S e. UPGraph /\ K e. ( V \ { N } ) ) /\ ( M e. ( V \ { N } ) /\ M =/= K ) ) ) |
| 45 | 44 | adantr | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) /\ M e. ( G NeighbVtx K ) ) -> ( ( S e. UPGraph /\ K e. ( V \ { N } ) ) /\ ( M e. ( V \ { N } ) /\ M =/= K ) ) ) |
| 46 | 1 2 3 4 | upgrres1lem2 | |- ( Vtx ` S ) = ( V \ { N } ) |
| 47 | 46 | eqcomi | |- ( V \ { N } ) = ( Vtx ` S ) |
| 48 | edgval | |- ( Edg ` S ) = ran ( iEdg ` S ) |
|
| 49 | 1 2 3 4 | upgrres1lem3 | |- ( iEdg ` S ) = ( _I |` F ) |
| 50 | 49 | rneqi | |- ran ( iEdg ` S ) = ran ( _I |` F ) |
| 51 | rnresi | |- ran ( _I |` F ) = F |
|
| 52 | 48 50 51 | 3eqtrri | |- F = ( Edg ` S ) |
| 53 | 47 52 | nbupgrel | |- ( ( ( S e. UPGraph /\ K e. ( V \ { N } ) ) /\ ( M e. ( V \ { N } ) /\ M =/= K ) ) -> ( M e. ( S NeighbVtx K ) <-> { M , K } e. F ) ) |
| 54 | 45 53 | syl | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) /\ M e. ( G NeighbVtx K ) ) -> ( M e. ( S NeighbVtx K ) <-> { M , K } e. F ) ) |
| 55 | 38 54 | mpbird | |- ( ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) /\ M e. ( G NeighbVtx K ) ) -> M e. ( S NeighbVtx K ) ) |
| 56 | 55 | ex | |- ( ( ( G e. UPGraph /\ N e. V ) /\ K e. ( V \ { N } ) /\ M e. ( V \ { N , K } ) ) -> ( M e. ( G NeighbVtx K ) -> M e. ( S NeighbVtx K ) ) ) |