This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Removal of a singleton from an unordered triple. (Contributed by Alexander van der Vekens, 5-Oct-2017) (Proof shortened by JJ, 23-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | diftpsn3 | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | disjprsn | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ) | |
| 2 | disj3 | ⊢ ( ( { 𝐴 , 𝐵 } ∩ { 𝐶 } ) = ∅ ↔ { 𝐴 , 𝐵 } = ( { 𝐴 , 𝐵 } ∖ { 𝐶 } ) ) | |
| 3 | 1 2 | sylib | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → { 𝐴 , 𝐵 } = ( { 𝐴 , 𝐵 } ∖ { 𝐶 } ) ) |
| 4 | 3 | eqcomd | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |
| 5 | difid | ⊢ ( { 𝐶 } ∖ { 𝐶 } ) = ∅ | |
| 6 | 5 | a1i | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐶 } ∖ { 𝐶 } ) = ∅ ) |
| 7 | 4 6 | uneq12d | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( ( { 𝐴 , 𝐵 } ∖ { 𝐶 } ) ∪ ( { 𝐶 } ∖ { 𝐶 } ) ) = ( { 𝐴 , 𝐵 } ∪ ∅ ) ) |
| 8 | df-tp | ⊢ { 𝐴 , 𝐵 , 𝐶 } = ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) | |
| 9 | 8 | difeq1i | ⊢ ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = ( ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ∖ { 𝐶 } ) |
| 10 | difundir | ⊢ ( ( { 𝐴 , 𝐵 } ∪ { 𝐶 } ) ∖ { 𝐶 } ) = ( ( { 𝐴 , 𝐵 } ∖ { 𝐶 } ) ∪ ( { 𝐶 } ∖ { 𝐶 } ) ) | |
| 11 | 9 10 | eqtr2i | ⊢ ( ( { 𝐴 , 𝐵 } ∖ { 𝐶 } ) ∪ ( { 𝐶 } ∖ { 𝐶 } ) ) = ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) |
| 12 | un0 | ⊢ ( { 𝐴 , 𝐵 } ∪ ∅ ) = { 𝐴 , 𝐵 } | |
| 13 | 7 11 12 | 3eqtr3g | ⊢ ( ( 𝐴 ≠ 𝐶 ∧ 𝐵 ≠ 𝐶 ) → ( { 𝐴 , 𝐵 , 𝐶 } ∖ { 𝐶 } ) = { 𝐴 , 𝐵 } ) |