This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma 2 for nb3grpr . (Contributed by Alexander van der Vekens, 17-Oct-2017) (Revised by AV, 28-Oct-2020) (Proof shortened by AV, 13-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nb3grpr.v | |- V = ( Vtx ` G ) |
|
| nb3grpr.e | |- E = ( Edg ` G ) |
||
| nb3grpr.g | |- ( ph -> G e. USGraph ) |
||
| nb3grpr.t | |- ( ph -> V = { A , B , C } ) |
||
| nb3grpr.s | |- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
||
| nb3grpr.n | |- ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) |
||
| Assertion | nb3grprlem2 | |- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> E. v e. V E. w e. ( V \ { v } ) ( G NeighbVtx A ) = { v , w } ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nb3grpr.v | |- V = ( Vtx ` G ) |
|
| 2 | nb3grpr.e | |- E = ( Edg ` G ) |
|
| 3 | nb3grpr.g | |- ( ph -> G e. USGraph ) |
|
| 4 | nb3grpr.t | |- ( ph -> V = { A , B , C } ) |
|
| 5 | nb3grpr.s | |- ( ph -> ( A e. X /\ B e. Y /\ C e. Z ) ) |
|
| 6 | nb3grpr.n | |- ( ph -> ( A =/= B /\ A =/= C /\ B =/= C ) ) |
|
| 7 | sneq | |- ( v = A -> { v } = { A } ) |
|
| 8 | 7 | difeq2d | |- ( v = A -> ( { A , B , C } \ { v } ) = ( { A , B , C } \ { A } ) ) |
| 9 | preq1 | |- ( v = A -> { v , w } = { A , w } ) |
|
| 10 | 9 | eqeq2d | |- ( v = A -> ( ( G NeighbVtx A ) = { v , w } <-> ( G NeighbVtx A ) = { A , w } ) ) |
| 11 | 8 10 | rexeqbidv | |- ( v = A -> ( E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } ) ) |
| 12 | sneq | |- ( v = B -> { v } = { B } ) |
|
| 13 | 12 | difeq2d | |- ( v = B -> ( { A , B , C } \ { v } ) = ( { A , B , C } \ { B } ) ) |
| 14 | preq1 | |- ( v = B -> { v , w } = { B , w } ) |
|
| 15 | 14 | eqeq2d | |- ( v = B -> ( ( G NeighbVtx A ) = { v , w } <-> ( G NeighbVtx A ) = { B , w } ) ) |
| 16 | 13 15 | rexeqbidv | |- ( v = B -> ( E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } ) ) |
| 17 | sneq | |- ( v = C -> { v } = { C } ) |
|
| 18 | 17 | difeq2d | |- ( v = C -> ( { A , B , C } \ { v } ) = ( { A , B , C } \ { C } ) ) |
| 19 | preq1 | |- ( v = C -> { v , w } = { C , w } ) |
|
| 20 | 19 | eqeq2d | |- ( v = C -> ( ( G NeighbVtx A ) = { v , w } <-> ( G NeighbVtx A ) = { C , w } ) ) |
| 21 | 18 20 | rexeqbidv | |- ( v = C -> ( E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) ) |
| 22 | 11 16 21 | rextpg | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( E. v e. { A , B , C } E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } <-> ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } \/ E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } \/ E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) ) ) |
| 23 | 5 22 | syl | |- ( ph -> ( E. v e. { A , B , C } E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } <-> ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } \/ E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } \/ E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) ) ) |
| 24 | 4 3 | jca | |- ( ph -> ( V = { A , B , C } /\ G e. USGraph ) ) |
| 25 | simpl | |- ( ( V = { A , B , C } /\ G e. USGraph ) -> V = { A , B , C } ) |
|
| 26 | difeq1 | |- ( V = { A , B , C } -> ( V \ { v } ) = ( { A , B , C } \ { v } ) ) |
|
| 27 | 26 | adantr | |- ( ( V = { A , B , C } /\ G e. USGraph ) -> ( V \ { v } ) = ( { A , B , C } \ { v } ) ) |
| 28 | 27 | rexeqdv | |- ( ( V = { A , B , C } /\ G e. USGraph ) -> ( E. w e. ( V \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } ) ) |
| 29 | 25 28 | rexeqbidv | |- ( ( V = { A , B , C } /\ G e. USGraph ) -> ( E. v e. V E. w e. ( V \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. v e. { A , B , C } E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } ) ) |
| 30 | 24 29 | syl | |- ( ph -> ( E. v e. V E. w e. ( V \ { v } ) ( G NeighbVtx A ) = { v , w } <-> E. v e. { A , B , C } E. w e. ( { A , B , C } \ { v } ) ( G NeighbVtx A ) = { v , w } ) ) |
| 31 | preq2 | |- ( w = B -> { A , w } = { A , B } ) |
|
| 32 | 31 | eqeq2d | |- ( w = B -> ( ( G NeighbVtx A ) = { A , w } <-> ( G NeighbVtx A ) = { A , B } ) ) |
| 33 | preq2 | |- ( w = C -> { A , w } = { A , C } ) |
|
| 34 | 33 | eqeq2d | |- ( w = C -> ( ( G NeighbVtx A ) = { A , w } <-> ( G NeighbVtx A ) = { A , C } ) ) |
| 35 | 32 34 | rexprg | |- ( ( B e. Y /\ C e. Z ) -> ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } <-> ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) ) ) |
| 36 | 35 | 3adant1 | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } <-> ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) ) ) |
| 37 | preq2 | |- ( w = C -> { B , w } = { B , C } ) |
|
| 38 | 37 | eqeq2d | |- ( w = C -> ( ( G NeighbVtx A ) = { B , w } <-> ( G NeighbVtx A ) = { B , C } ) ) |
| 39 | preq2 | |- ( w = A -> { B , w } = { B , A } ) |
|
| 40 | 39 | eqeq2d | |- ( w = A -> ( ( G NeighbVtx A ) = { B , w } <-> ( G NeighbVtx A ) = { B , A } ) ) |
| 41 | 38 40 | rexprg | |- ( ( C e. Z /\ A e. X ) -> ( E. w e. { C , A } ( G NeighbVtx A ) = { B , w } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) ) |
| 42 | 41 | ancoms | |- ( ( A e. X /\ C e. Z ) -> ( E. w e. { C , A } ( G NeighbVtx A ) = { B , w } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) ) |
| 43 | 42 | 3adant2 | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( E. w e. { C , A } ( G NeighbVtx A ) = { B , w } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) ) |
| 44 | preq2 | |- ( w = A -> { C , w } = { C , A } ) |
|
| 45 | 44 | eqeq2d | |- ( w = A -> ( ( G NeighbVtx A ) = { C , w } <-> ( G NeighbVtx A ) = { C , A } ) ) |
| 46 | preq2 | |- ( w = B -> { C , w } = { C , B } ) |
|
| 47 | 46 | eqeq2d | |- ( w = B -> ( ( G NeighbVtx A ) = { C , w } <-> ( G NeighbVtx A ) = { C , B } ) ) |
| 48 | 45 47 | rexprg | |- ( ( A e. X /\ B e. Y ) -> ( E. w e. { A , B } ( G NeighbVtx A ) = { C , w } <-> ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) |
| 49 | 48 | 3adant3 | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( E. w e. { A , B } ( G NeighbVtx A ) = { C , w } <-> ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) |
| 50 | 36 43 49 | 3orbi123d | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } \/ E. w e. { C , A } ( G NeighbVtx A ) = { B , w } \/ E. w e. { A , B } ( G NeighbVtx A ) = { C , w } ) <-> ( ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) \/ ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) ) |
| 51 | 5 50 | syl | |- ( ph -> ( ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } \/ E. w e. { C , A } ( G NeighbVtx A ) = { B , w } \/ E. w e. { A , B } ( G NeighbVtx A ) = { C , w } ) <-> ( ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) \/ ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) ) |
| 52 | tprot | |- { A , B , C } = { B , C , A } |
|
| 53 | 52 | a1i | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> { A , B , C } = { B , C , A } ) |
| 54 | 53 | difeq1d | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { A } ) = ( { B , C , A } \ { A } ) ) |
| 55 | necom | |- ( A =/= B <-> B =/= A ) |
|
| 56 | necom | |- ( A =/= C <-> C =/= A ) |
|
| 57 | diftpsn3 | |- ( ( B =/= A /\ C =/= A ) -> ( { B , C , A } \ { A } ) = { B , C } ) |
|
| 58 | 55 56 57 | syl2anb | |- ( ( A =/= B /\ A =/= C ) -> ( { B , C , A } \ { A } ) = { B , C } ) |
| 59 | 58 | 3adant3 | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { B , C , A } \ { A } ) = { B , C } ) |
| 60 | 54 59 | eqtrd | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { A } ) = { B , C } ) |
| 61 | 60 | rexeqdv | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } <-> E. w e. { B , C } ( G NeighbVtx A ) = { A , w } ) ) |
| 62 | tprot | |- { C , A , B } = { A , B , C } |
|
| 63 | 62 | eqcomi | |- { A , B , C } = { C , A , B } |
| 64 | 63 | a1i | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> { A , B , C } = { C , A , B } ) |
| 65 | 64 | difeq1d | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { B } ) = ( { C , A , B } \ { B } ) ) |
| 66 | necom | |- ( B =/= C <-> C =/= B ) |
|
| 67 | 66 | anbi1i | |- ( ( B =/= C /\ A =/= B ) <-> ( C =/= B /\ A =/= B ) ) |
| 68 | 67 | biimpi | |- ( ( B =/= C /\ A =/= B ) -> ( C =/= B /\ A =/= B ) ) |
| 69 | 68 | ancoms | |- ( ( A =/= B /\ B =/= C ) -> ( C =/= B /\ A =/= B ) ) |
| 70 | diftpsn3 | |- ( ( C =/= B /\ A =/= B ) -> ( { C , A , B } \ { B } ) = { C , A } ) |
|
| 71 | 69 70 | syl | |- ( ( A =/= B /\ B =/= C ) -> ( { C , A , B } \ { B } ) = { C , A } ) |
| 72 | 71 | 3adant2 | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { C , A , B } \ { B } ) = { C , A } ) |
| 73 | 65 72 | eqtrd | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { B } ) = { C , A } ) |
| 74 | 73 | rexeqdv | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } <-> E. w e. { C , A } ( G NeighbVtx A ) = { B , w } ) ) |
| 75 | diftpsn3 | |- ( ( A =/= C /\ B =/= C ) -> ( { A , B , C } \ { C } ) = { A , B } ) |
|
| 76 | 75 | 3adant1 | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( { A , B , C } \ { C } ) = { A , B } ) |
| 77 | 76 | rexeqdv | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } <-> E. w e. { A , B } ( G NeighbVtx A ) = { C , w } ) ) |
| 78 | 61 74 77 | 3orbi123d | |- ( ( A =/= B /\ A =/= C /\ B =/= C ) -> ( ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } \/ E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } \/ E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) <-> ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } \/ E. w e. { C , A } ( G NeighbVtx A ) = { B , w } \/ E. w e. { A , B } ( G NeighbVtx A ) = { C , w } ) ) ) |
| 79 | 6 78 | syl | |- ( ph -> ( ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } \/ E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } \/ E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) <-> ( E. w e. { B , C } ( G NeighbVtx A ) = { A , w } \/ E. w e. { C , A } ( G NeighbVtx A ) = { B , w } \/ E. w e. { A , B } ( G NeighbVtx A ) = { C , w } ) ) ) |
| 80 | prcom | |- { C , B } = { B , C } |
|
| 81 | 80 | eqeq2i | |- ( ( G NeighbVtx A ) = { C , B } <-> ( G NeighbVtx A ) = { B , C } ) |
| 82 | 81 | orbi2i | |- ( ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { C , B } ) <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , C } ) ) |
| 83 | oridm | |- ( ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , C } ) <-> ( G NeighbVtx A ) = { B , C } ) |
|
| 84 | 82 83 | bitr2i | |- ( ( G NeighbVtx A ) = { B , C } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { C , B } ) ) |
| 85 | 84 | a1i | |- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { C , B } ) ) ) |
| 86 | nbgrnself2 | |- A e/ ( G NeighbVtx A ) |
|
| 87 | df-nel | |- ( A e/ ( G NeighbVtx A ) <-> -. A e. ( G NeighbVtx A ) ) |
|
| 88 | prid2g | |- ( A e. X -> A e. { B , A } ) |
|
| 89 | 88 | 3ad2ant1 | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> A e. { B , A } ) |
| 90 | eleq2 | |- ( ( G NeighbVtx A ) = { B , A } -> ( A e. ( G NeighbVtx A ) <-> A e. { B , A } ) ) |
|
| 91 | 89 90 | syl5ibrcom | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( G NeighbVtx A ) = { B , A } -> A e. ( G NeighbVtx A ) ) ) |
| 92 | 91 | con3rr3 | |- ( -. A e. ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> -. ( G NeighbVtx A ) = { B , A } ) ) |
| 93 | 87 92 | sylbi | |- ( A e/ ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> -. ( G NeighbVtx A ) = { B , A } ) ) |
| 94 | 86 5 93 | mpsyl | |- ( ph -> -. ( G NeighbVtx A ) = { B , A } ) |
| 95 | biorf | |- ( -. ( G NeighbVtx A ) = { B , A } -> ( ( G NeighbVtx A ) = { B , C } <-> ( ( G NeighbVtx A ) = { B , A } \/ ( G NeighbVtx A ) = { B , C } ) ) ) |
|
| 96 | orcom | |- ( ( ( G NeighbVtx A ) = { B , A } \/ ( G NeighbVtx A ) = { B , C } ) <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) |
|
| 97 | 95 96 | bitrdi | |- ( -. ( G NeighbVtx A ) = { B , A } -> ( ( G NeighbVtx A ) = { B , C } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) ) |
| 98 | 94 97 | syl | |- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) ) ) |
| 99 | prid2g | |- ( A e. X -> A e. { C , A } ) |
|
| 100 | 99 | 3ad2ant1 | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> A e. { C , A } ) |
| 101 | eleq2 | |- ( ( G NeighbVtx A ) = { C , A } -> ( A e. ( G NeighbVtx A ) <-> A e. { C , A } ) ) |
|
| 102 | 100 101 | syl5ibrcom | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( G NeighbVtx A ) = { C , A } -> A e. ( G NeighbVtx A ) ) ) |
| 103 | 102 | con3rr3 | |- ( -. A e. ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> -. ( G NeighbVtx A ) = { C , A } ) ) |
| 104 | 87 103 | sylbi | |- ( A e/ ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> -. ( G NeighbVtx A ) = { C , A } ) ) |
| 105 | 86 5 104 | mpsyl | |- ( ph -> -. ( G NeighbVtx A ) = { C , A } ) |
| 106 | biorf | |- ( -. ( G NeighbVtx A ) = { C , A } -> ( ( G NeighbVtx A ) = { C , B } <-> ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) |
|
| 107 | 105 106 | syl | |- ( ph -> ( ( G NeighbVtx A ) = { C , B } <-> ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) |
| 108 | 98 107 | orbi12d | |- ( ph -> ( ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { C , B } ) <-> ( ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) ) |
| 109 | prid1g | |- ( A e. X -> A e. { A , B } ) |
|
| 110 | 109 | 3ad2ant1 | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> A e. { A , B } ) |
| 111 | eleq2 | |- ( ( G NeighbVtx A ) = { A , B } -> ( A e. ( G NeighbVtx A ) <-> A e. { A , B } ) ) |
|
| 112 | 110 111 | syl5ibrcom | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( G NeighbVtx A ) = { A , B } -> A e. ( G NeighbVtx A ) ) ) |
| 113 | 112 | con3dimp | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ -. A e. ( G NeighbVtx A ) ) -> -. ( G NeighbVtx A ) = { A , B } ) |
| 114 | prid1g | |- ( A e. X -> A e. { A , C } ) |
|
| 115 | 114 | 3ad2ant1 | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> A e. { A , C } ) |
| 116 | eleq2 | |- ( ( G NeighbVtx A ) = { A , C } -> ( A e. ( G NeighbVtx A ) <-> A e. { A , C } ) ) |
|
| 117 | 115 116 | syl5ibrcom | |- ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( ( G NeighbVtx A ) = { A , C } -> A e. ( G NeighbVtx A ) ) ) |
| 118 | 117 | con3dimp | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ -. A e. ( G NeighbVtx A ) ) -> -. ( G NeighbVtx A ) = { A , C } ) |
| 119 | 113 118 | jca | |- ( ( ( A e. X /\ B e. Y /\ C e. Z ) /\ -. A e. ( G NeighbVtx A ) ) -> ( -. ( G NeighbVtx A ) = { A , B } /\ -. ( G NeighbVtx A ) = { A , C } ) ) |
| 120 | 119 | expcom | |- ( -. A e. ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( -. ( G NeighbVtx A ) = { A , B } /\ -. ( G NeighbVtx A ) = { A , C } ) ) ) |
| 121 | 87 120 | sylbi | |- ( A e/ ( G NeighbVtx A ) -> ( ( A e. X /\ B e. Y /\ C e. Z ) -> ( -. ( G NeighbVtx A ) = { A , B } /\ -. ( G NeighbVtx A ) = { A , C } ) ) ) |
| 122 | 86 5 121 | mpsyl | |- ( ph -> ( -. ( G NeighbVtx A ) = { A , B } /\ -. ( G NeighbVtx A ) = { A , C } ) ) |
| 123 | ioran | |- ( -. ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) <-> ( -. ( G NeighbVtx A ) = { A , B } /\ -. ( G NeighbVtx A ) = { A , C } ) ) |
|
| 124 | 122 123 | sylibr | |- ( ph -> -. ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) ) |
| 125 | 124 | 3bior1fd | |- ( ph -> ( ( ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) <-> ( ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) \/ ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) ) |
| 126 | 85 108 125 | 3bitrd | |- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( ( ( G NeighbVtx A ) = { A , B } \/ ( G NeighbVtx A ) = { A , C } ) \/ ( ( G NeighbVtx A ) = { B , C } \/ ( G NeighbVtx A ) = { B , A } ) \/ ( ( G NeighbVtx A ) = { C , A } \/ ( G NeighbVtx A ) = { C , B } ) ) ) ) |
| 127 | 51 79 126 | 3bitr4rd | |- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> ( E. w e. ( { A , B , C } \ { A } ) ( G NeighbVtx A ) = { A , w } \/ E. w e. ( { A , B , C } \ { B } ) ( G NeighbVtx A ) = { B , w } \/ E. w e. ( { A , B , C } \ { C } ) ( G NeighbVtx A ) = { C , w } ) ) ) |
| 128 | 23 30 127 | 3bitr4rd | |- ( ph -> ( ( G NeighbVtx A ) = { B , C } <-> E. v e. V E. w e. ( V \ { v } ) ( G NeighbVtx A ) = { v , w } ) ) |