This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Convert a restricted existential quantification over a pair to a disjunction. (Contributed by NM, 17-Sep-2011) (Revised by Mario Carneiro, 23-Apr-2015) Avoid ax-10 , ax-12 . (Revised by GG, 30-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ralprg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| ralprg.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | ||
| Assertion | rexprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ralprg.1 | ⊢ ( 𝑥 = 𝐴 → ( 𝜑 ↔ 𝜓 ) ) | |
| 2 | ralprg.2 | ⊢ ( 𝑥 = 𝐵 → ( 𝜑 ↔ 𝜒 ) ) | |
| 3 | 1 | notbid | ⊢ ( 𝑥 = 𝐴 → ( ¬ 𝜑 ↔ ¬ 𝜓 ) ) |
| 4 | 2 | notbid | ⊢ ( 𝑥 = 𝐵 → ( ¬ 𝜑 ↔ ¬ 𝜒 ) ) |
| 5 | 3 4 | ralprg | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝜑 ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ) |
| 6 | ralnex | ⊢ ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝜑 ↔ ¬ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ) | |
| 7 | pm4.56 | ⊢ ( ( ¬ 𝜓 ∧ ¬ 𝜒 ) ↔ ¬ ( 𝜓 ∨ 𝜒 ) ) | |
| 8 | 6 7 | bibi12i | ⊢ ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝜑 ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) ↔ ( ¬ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ¬ ( 𝜓 ∨ 𝜒 ) ) ) |
| 9 | notbi | ⊢ ( ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) ↔ ( ¬ ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ¬ ( 𝜓 ∨ 𝜒 ) ) ) | |
| 10 | 8 9 | sylbb2 | ⊢ ( ( ∀ 𝑥 ∈ { 𝐴 , 𝐵 } ¬ 𝜑 ↔ ( ¬ 𝜓 ∧ ¬ 𝜒 ) ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) ) |
| 11 | 5 10 | syl | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ∃ 𝑥 ∈ { 𝐴 , 𝐵 } 𝜑 ↔ ( 𝜓 ∨ 𝜒 ) ) ) |