This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If two categories have the same set of objects, morphisms, and compositions, then they have the same natural transformations. (Contributed by Mario Carneiro, 26-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fucpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| fucpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | ||
| fucpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | ||
| fucpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | ||
| fucpropd.a | ⊢ ( 𝜑 → 𝐴 ∈ Cat ) | ||
| fucpropd.b | ⊢ ( 𝜑 → 𝐵 ∈ Cat ) | ||
| fucpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | ||
| fucpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | ||
| Assertion | natpropd | ⊢ ( 𝜑 → ( 𝐴 Nat 𝐶 ) = ( 𝐵 Nat 𝐷 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fucpropd.1 | ⊢ ( 𝜑 → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) | |
| 2 | fucpropd.2 | ⊢ ( 𝜑 → ( compf ‘ 𝐴 ) = ( compf ‘ 𝐵 ) ) | |
| 3 | fucpropd.3 | ⊢ ( 𝜑 → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) | |
| 4 | fucpropd.4 | ⊢ ( 𝜑 → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) | |
| 5 | fucpropd.a | ⊢ ( 𝜑 → 𝐴 ∈ Cat ) | |
| 6 | fucpropd.b | ⊢ ( 𝜑 → 𝐵 ∈ Cat ) | |
| 7 | fucpropd.c | ⊢ ( 𝜑 → 𝐶 ∈ Cat ) | |
| 8 | fucpropd.d | ⊢ ( 𝜑 → 𝐷 ∈ Cat ) | |
| 9 | 1 2 3 4 5 6 7 8 | funcpropd | ⊢ ( 𝜑 → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
| 10 | 9 | adantr | ⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) → ( 𝐴 Func 𝐶 ) = ( 𝐵 Func 𝐷 ) ) |
| 11 | nfv | ⊢ Ⅎ 𝑟 ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) | |
| 12 | nfcsb1v | ⊢ Ⅎ 𝑟 ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } | |
| 13 | 12 | a1i | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) → Ⅎ 𝑟 ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 14 | fvexd | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) → ( 1st ‘ 𝑓 ) ∈ V ) | |
| 15 | nfv | ⊢ Ⅎ 𝑠 ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) | |
| 16 | nfcsb1v | ⊢ Ⅎ 𝑠 ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } | |
| 17 | 16 | a1i | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) → Ⅎ 𝑠 ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 18 | fvexd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) → ( 1st ‘ 𝑔 ) ∈ V ) | |
| 19 | eqid | ⊢ ( Base ‘ 𝐶 ) = ( Base ‘ 𝐶 ) | |
| 20 | eqid | ⊢ ( Hom ‘ 𝐶 ) = ( Hom ‘ 𝐶 ) | |
| 21 | eqid | ⊢ ( Hom ‘ 𝐷 ) = ( Hom ‘ 𝐷 ) | |
| 22 | 3 | ad4antr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 23 | eqid | ⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) | |
| 24 | simplr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑟 = ( 1st ‘ 𝑓 ) ) | |
| 25 | relfunc | ⊢ Rel ( 𝐴 Func 𝐶 ) | |
| 26 | simpllr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) | |
| 27 | 26 | simpld | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) |
| 28 | 1st2ndbr | ⊢ ( ( Rel ( 𝐴 Func 𝐶 ) ∧ 𝑓 ∈ ( 𝐴 Func 𝐶 ) ) → ( 1st ‘ 𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) | |
| 29 | 25 27 28 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → ( 1st ‘ 𝑓 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) |
| 30 | 24 29 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑟 ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) |
| 31 | 23 19 30 | funcf1 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑟 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 32 | 31 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑟 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 33 | simpr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑠 = ( 1st ‘ 𝑔 ) ) | |
| 34 | 26 | simprd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) |
| 35 | 1st2ndbr | ⊢ ( ( Rel ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) → ( 1st ‘ 𝑔 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑔 ) ) | |
| 36 | 25 34 35 | sylancr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → ( 1st ‘ 𝑔 ) ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑔 ) ) |
| 37 | 33 36 | eqbrtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑠 ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑔 ) ) |
| 38 | 23 19 37 | funcf1 | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → 𝑠 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 39 | 38 | ffvelcdmda | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑠 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 40 | 19 20 21 22 32 39 | homfeqval | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) = ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ) |
| 41 | 40 | ixpeq2dva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ) |
| 42 | 1 | homfeqbas | ⊢ ( 𝜑 → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 43 | 42 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 44 | 43 | ixpeq1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ) |
| 45 | 41 44 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ) |
| 46 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑟 ‘ 𝑥 ) = ( 𝑟 ‘ 𝑧 ) ) | |
| 47 | fveq2 | ⊢ ( 𝑥 = 𝑧 → ( 𝑠 ‘ 𝑥 ) = ( 𝑠 ‘ 𝑧 ) ) | |
| 48 | 46 47 | oveq12d | ⊢ ( 𝑥 = 𝑧 → ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) = ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) |
| 49 | 48 | cbvixpv | ⊢ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) |
| 50 | 49 | eleq2i | ⊢ ( 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ↔ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) |
| 51 | 43 | adantr | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 52 | 51 | adantr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( Base ‘ 𝐴 ) = ( Base ‘ 𝐵 ) ) |
| 53 | eqid | ⊢ ( Hom ‘ 𝐴 ) = ( Hom ‘ 𝐴 ) | |
| 54 | eqid | ⊢ ( Hom ‘ 𝐵 ) = ( Hom ‘ 𝐵 ) | |
| 55 | 1 | ad6antr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( Homf ‘ 𝐴 ) = ( Homf ‘ 𝐵 ) ) |
| 56 | simplr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑥 ∈ ( Base ‘ 𝐴 ) ) | |
| 57 | simpr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑦 ∈ ( Base ‘ 𝐴 ) ) | |
| 58 | 23 53 54 55 56 57 | homfeqval | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) = ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ) |
| 59 | eqid | ⊢ ( comp ‘ 𝐶 ) = ( comp ‘ 𝐶 ) | |
| 60 | eqid | ⊢ ( comp ‘ 𝐷 ) = ( comp ‘ 𝐷 ) | |
| 61 | 3 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( Homf ‘ 𝐶 ) = ( Homf ‘ 𝐷 ) ) |
| 62 | 4 | ad7antr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( compf ‘ 𝐶 ) = ( compf ‘ 𝐷 ) ) |
| 63 | 32 | ad5ant13 | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑟 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 64 | 31 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑟 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 65 | 64 | ffvelcdmda | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑟 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 66 | 65 | adantr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑟 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 67 | 38 | ad2antrr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → 𝑠 : ( Base ‘ 𝐴 ) ⟶ ( Base ‘ 𝐶 ) ) |
| 68 | 67 | ffvelcdmda | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑠 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 69 | 68 | adantr | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑠 ‘ 𝑦 ) ∈ ( Base ‘ 𝐶 ) ) |
| 70 | 30 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑟 ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑓 ) ) |
| 71 | 23 53 20 70 56 57 | funcf2 | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑟 ‘ 𝑦 ) ) ) |
| 72 | 71 | ffvelcdmda | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ∈ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑟 ‘ 𝑦 ) ) ) |
| 73 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑟 ‘ 𝑧 ) = ( 𝑟 ‘ 𝑦 ) ) | |
| 74 | fveq2 | ⊢ ( 𝑧 = 𝑦 → ( 𝑠 ‘ 𝑧 ) = ( 𝑠 ‘ 𝑦 ) ) | |
| 75 | 73 74 | oveq12d | ⊢ ( 𝑧 = 𝑦 → ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) = ( ( 𝑟 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ) |
| 76 | 75 | fvixp | ⊢ ( ( 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑎 ‘ 𝑦 ) ∈ ( ( 𝑟 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ) |
| 77 | 76 | ad5ant24 | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑎 ‘ 𝑦 ) ∈ ( ( 𝑟 ‘ 𝑦 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ) |
| 78 | 19 20 59 60 61 62 63 66 69 72 77 | comfeqval | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) ) |
| 79 | 39 | ad5ant13 | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑠 ‘ 𝑥 ) ∈ ( Base ‘ 𝐶 ) ) |
| 80 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑟 ‘ 𝑧 ) = ( 𝑟 ‘ 𝑥 ) ) | |
| 81 | fveq2 | ⊢ ( 𝑧 = 𝑥 → ( 𝑠 ‘ 𝑧 ) = ( 𝑠 ‘ 𝑥 ) ) | |
| 82 | 80 81 | oveq12d | ⊢ ( 𝑧 = 𝑥 → ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) = ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ) |
| 83 | 82 | fvixp | ⊢ ( ( 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑎 ‘ 𝑥 ) ∈ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ) |
| 84 | 83 | ad5ant23 | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( 𝑎 ‘ 𝑥 ) ∈ ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ) |
| 85 | 37 | ad3antrrr | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → 𝑠 ( 𝐴 Func 𝐶 ) ( 2nd ‘ 𝑔 ) ) |
| 86 | 23 53 20 85 56 57 | funcf2 | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) : ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ⟶ ( ( 𝑠 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ) |
| 87 | 86 | ffvelcdmda | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ∈ ( ( 𝑠 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ) |
| 88 | 19 20 59 60 61 62 63 79 69 84 87 | comfeqval | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) |
| 89 | 78 88 | eqeq12d | ⊢ ( ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) ∧ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ) → ( ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 90 | 58 89 | raleqbidva | ⊢ ( ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) ∧ 𝑦 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 91 | 52 90 | raleqbidva | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) ∧ 𝑥 ∈ ( Base ‘ 𝐴 ) ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 92 | 51 91 | raleqbidva | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑧 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑧 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑧 ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 93 | 50 92 | sylan2b | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) ∧ 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 94 | 45 93 | rabeqbidva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 95 | csbeq1a | ⊢ ( 𝑠 = ( 1st ‘ 𝑔 ) → { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) | |
| 96 | 95 | adantl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 97 | 94 96 | eqtrd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) ∧ 𝑠 = ( 1st ‘ 𝑔 ) ) → { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 98 | 15 17 18 97 | csbiedf | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 99 | csbeq1a | ⊢ ( 𝑟 = ( 1st ‘ 𝑓 ) → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) | |
| 100 | 99 | adantl | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 101 | 98 100 | eqtrd | ⊢ ( ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) ∧ 𝑟 = ( 1st ‘ 𝑓 ) ) → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 102 | 11 13 14 101 | csbiedf | ⊢ ( ( 𝜑 ∧ ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) ∧ 𝑔 ∈ ( 𝐴 Func 𝐶 ) ) ) → ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 103 | 9 10 102 | mpoeq123dva | ⊢ ( 𝜑 → ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑔 ∈ ( 𝐴 Func 𝐶 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑔 ∈ ( 𝐵 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
| 104 | eqid | ⊢ ( 𝐴 Nat 𝐶 ) = ( 𝐴 Nat 𝐶 ) | |
| 105 | 104 23 53 20 59 | natfval | ⊢ ( 𝐴 Nat 𝐶 ) = ( 𝑓 ∈ ( 𝐴 Func 𝐶 ) , 𝑔 ∈ ( 𝐴 Func 𝐶 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐴 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐶 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐴 ) ∀ 𝑦 ∈ ( Base ‘ 𝐴 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐴 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐶 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 106 | eqid | ⊢ ( 𝐵 Nat 𝐷 ) = ( 𝐵 Nat 𝐷 ) | |
| 107 | eqid | ⊢ ( Base ‘ 𝐵 ) = ( Base ‘ 𝐵 ) | |
| 108 | 106 107 54 21 60 | natfval | ⊢ ( 𝐵 Nat 𝐷 ) = ( 𝑓 ∈ ( 𝐵 Func 𝐷 ) , 𝑔 ∈ ( 𝐵 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝐵 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝐷 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝐵 ) ∀ 𝑦 ∈ ( Base ‘ 𝐵 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝐵 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝐷 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 109 | 103 105 108 | 3eqtr4g | ⊢ ( 𝜑 → ( 𝐴 Nat 𝐶 ) = ( 𝐵 Nat 𝐷 ) ) |