This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Value of the function giving natural transformations between two categories. (Contributed by Mario Carneiro, 6-Jan-2017) (Proof shortened by AV, 1-Mar-2024)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | natfval.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| natfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | ||
| natfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | ||
| natfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | ||
| natfval.o | ⊢ · = ( comp ‘ 𝐷 ) | ||
| Assertion | natfval | ⊢ 𝑁 = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | natfval.1 | ⊢ 𝑁 = ( 𝐶 Nat 𝐷 ) | |
| 2 | natfval.b | ⊢ 𝐵 = ( Base ‘ 𝐶 ) | |
| 3 | natfval.h | ⊢ 𝐻 = ( Hom ‘ 𝐶 ) | |
| 4 | natfval.j | ⊢ 𝐽 = ( Hom ‘ 𝐷 ) | |
| 5 | natfval.o | ⊢ · = ( comp ‘ 𝐷 ) | |
| 6 | oveq12 | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( 𝑡 Func 𝑢 ) = ( 𝐶 Func 𝐷 ) ) | |
| 7 | simpl | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → 𝑡 = 𝐶 ) | |
| 8 | 7 | fveq2d | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Base ‘ 𝑡 ) = ( Base ‘ 𝐶 ) ) |
| 9 | 8 2 | eqtr4di | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Base ‘ 𝑡 ) = 𝐵 ) |
| 10 | 9 | ixpeq1d | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ) |
| 11 | simpr | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → 𝑢 = 𝐷 ) | |
| 12 | 11 | fveq2d | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Hom ‘ 𝑢 ) = ( Hom ‘ 𝐷 ) ) |
| 13 | 12 4 | eqtr4di | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Hom ‘ 𝑢 ) = 𝐽 ) |
| 14 | 13 | oveqd | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) = ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ) |
| 15 | 14 | ixpeq2dv | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ) |
| 16 | 10 15 | eqtrd | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) = X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ) |
| 17 | 7 | fveq2d | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Hom ‘ 𝑡 ) = ( Hom ‘ 𝐶 ) ) |
| 18 | 17 3 | eqtr4di | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( Hom ‘ 𝑡 ) = 𝐻 ) |
| 19 | 18 | oveqd | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) = ( 𝑥 𝐻 𝑦 ) ) |
| 20 | 11 | fveq2d | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( comp ‘ 𝑢 ) = ( comp ‘ 𝐷 ) ) |
| 21 | 20 5 | eqtr4di | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( comp ‘ 𝑢 ) = · ) |
| 22 | 21 | oveqd | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) = ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ) |
| 23 | 22 | oveqd | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) ) |
| 24 | 21 | oveqd | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) = ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ) |
| 25 | 24 | oveqd | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) |
| 26 | 23 25 | eqeq12d | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 27 | 19 26 | raleqbidv | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 28 | 9 27 | raleqbidv | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 29 | 9 28 | raleqbidv | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ↔ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) ) ) |
| 30 | 16 29 | rabeqbidv | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 31 | 30 | csbeq2dv | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 32 | 31 | csbeq2dv | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } = ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 33 | 6 6 32 | mpoeq123dv | ⊢ ( ( 𝑡 = 𝐶 ∧ 𝑢 = 𝐷 ) → ( 𝑓 ∈ ( 𝑡 Func 𝑢 ) , 𝑔 ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
| 34 | df-nat | ⊢ Nat = ( 𝑡 ∈ Cat , 𝑢 ∈ Cat ↦ ( 𝑓 ∈ ( 𝑡 Func 𝑢 ) , 𝑔 ∈ ( 𝑡 Func 𝑢 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ ( Base ‘ 𝑡 ) ( ( 𝑟 ‘ 𝑥 ) ( Hom ‘ 𝑢 ) ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ ( Base ‘ 𝑡 ) ∀ 𝑦 ∈ ( Base ‘ 𝑡 ) ∀ ℎ ∈ ( 𝑥 ( Hom ‘ 𝑡 ) 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 ( comp ‘ 𝑢 ) ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) | |
| 35 | ovex | ⊢ ( 𝐶 Func 𝐷 ) ∈ V | |
| 36 | 35 35 | mpoex | ⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ∈ V |
| 37 | 33 34 36 | ovmpoa | ⊢ ( ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Nat 𝐷 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
| 38 | 34 | mpondm0 | ⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Nat 𝐷 ) = ∅ ) |
| 39 | funcrcl | ⊢ ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) → ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) ) | |
| 40 | 39 | con3i | ⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ¬ 𝑓 ∈ ( 𝐶 Func 𝐷 ) ) |
| 41 | 40 | eq0rdv | ⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Func 𝐷 ) = ∅ ) |
| 42 | 41 | olcd | ⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( ( 𝐶 Func 𝐷 ) = ∅ ∨ ( 𝐶 Func 𝐷 ) = ∅ ) ) |
| 43 | 0mpo0 | ⊢ ( ( ( 𝐶 Func 𝐷 ) = ∅ ∨ ( 𝐶 Func 𝐷 ) = ∅ ) → ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) = ∅ ) | |
| 44 | 42 43 | syl | ⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) = ∅ ) |
| 45 | 38 44 | eqtr4d | ⊢ ( ¬ ( 𝐶 ∈ Cat ∧ 𝐷 ∈ Cat ) → ( 𝐶 Nat 𝐷 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) ) |
| 46 | 37 45 | pm2.61i | ⊢ ( 𝐶 Nat 𝐷 ) = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |
| 47 | 1 46 | eqtri | ⊢ 𝑁 = ( 𝑓 ∈ ( 𝐶 Func 𝐷 ) , 𝑔 ∈ ( 𝐶 Func 𝐷 ) ↦ ⦋ ( 1st ‘ 𝑓 ) / 𝑟 ⦌ ⦋ ( 1st ‘ 𝑔 ) / 𝑠 ⦌ { 𝑎 ∈ X 𝑥 ∈ 𝐵 ( ( 𝑟 ‘ 𝑥 ) 𝐽 ( 𝑠 ‘ 𝑥 ) ) ∣ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ ℎ ∈ ( 𝑥 𝐻 𝑦 ) ( ( 𝑎 ‘ 𝑦 ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑟 ‘ 𝑦 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( ( 𝑥 ( 2nd ‘ 𝑓 ) 𝑦 ) ‘ ℎ ) ) = ( ( ( 𝑥 ( 2nd ‘ 𝑔 ) 𝑦 ) ‘ ℎ ) ( 〈 ( 𝑟 ‘ 𝑥 ) , ( 𝑠 ‘ 𝑥 ) 〉 · ( 𝑠 ‘ 𝑦 ) ) ( 𝑎 ‘ 𝑥 ) ) } ) |