This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muval1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ( μ ‘ 𝐴 ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muval | ⊢ ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) | |
| 2 | 1 | 3ad2ant1 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ( μ ‘ 𝐴 ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
| 3 | exprmfct | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑃 ) | |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑃 ) |
| 5 | prmnn | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℕ ) | |
| 6 | simpl2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝑃 ∈ ( ℤ≥ ‘ 2 ) ) | |
| 7 | eluz2b2 | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) ↔ ( 𝑃 ∈ ℕ ∧ 1 < 𝑃 ) ) | |
| 8 | 6 7 | sylib | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ∈ ℕ ∧ 1 < 𝑃 ) ) |
| 9 | 8 | simpld | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝑃 ∈ ℕ ) |
| 10 | dvdssqlem | ⊢ ( ( 𝑝 ∈ ℕ ∧ 𝑃 ∈ ℕ ) → ( 𝑝 ∥ 𝑃 ↔ ( 𝑝 ↑ 2 ) ∥ ( 𝑃 ↑ 2 ) ) ) | |
| 11 | 5 9 10 | syl2an2 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑃 ↔ ( 𝑝 ↑ 2 ) ∥ ( 𝑃 ↑ 2 ) ) ) |
| 12 | simpl3 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ↑ 2 ) ∥ 𝐴 ) | |
| 13 | prmz | ⊢ ( 𝑝 ∈ ℙ → 𝑝 ∈ ℤ ) | |
| 14 | 13 | adantl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝑝 ∈ ℤ ) |
| 15 | zsqcl | ⊢ ( 𝑝 ∈ ℤ → ( 𝑝 ↑ 2 ) ∈ ℤ ) | |
| 16 | 14 15 | syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ↑ 2 ) ∈ ℤ ) |
| 17 | eluzelz | ⊢ ( 𝑃 ∈ ( ℤ≥ ‘ 2 ) → 𝑃 ∈ ℤ ) | |
| 18 | zsqcl | ⊢ ( 𝑃 ∈ ℤ → ( 𝑃 ↑ 2 ) ∈ ℤ ) | |
| 19 | 6 17 18 | 3syl | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑃 ↑ 2 ) ∈ ℤ ) |
| 20 | simpl1 | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℕ ) | |
| 21 | 20 | nnzd | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → 𝐴 ∈ ℤ ) |
| 22 | dvdstr | ⊢ ( ( ( 𝑝 ↑ 2 ) ∈ ℤ ∧ ( 𝑃 ↑ 2 ) ∈ ℤ ∧ 𝐴 ∈ ℤ ) → ( ( ( 𝑝 ↑ 2 ) ∥ ( 𝑃 ↑ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) | |
| 23 | 16 19 21 22 | syl3anc | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( ( ( 𝑝 ↑ 2 ) ∥ ( 𝑃 ↑ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 24 | 12 23 | mpan2d | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( ( 𝑝 ↑ 2 ) ∥ ( 𝑃 ↑ 2 ) → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 25 | 11 24 | sylbid | ⊢ ( ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) ∧ 𝑝 ∈ ℙ ) → ( 𝑝 ∥ 𝑃 → ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 26 | 25 | reximdva | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ( ∃ 𝑝 ∈ ℙ 𝑝 ∥ 𝑃 → ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 27 | 4 26 | mpd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) |
| 28 | 27 | iftrued | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) = 0 ) |
| 29 | 2 28 | eqtrd | ⊢ ( ( 𝐴 ∈ ℕ ∧ 𝑃 ∈ ( ℤ≥ ‘ 2 ) ∧ ( 𝑃 ↑ 2 ) ∥ 𝐴 ) → ( μ ‘ 𝐴 ) = 0 ) |