This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Möbius function. (Contributed by Mario Carneiro, 22-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muval | ⊢ ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( ( 𝑝 ↑ 2 ) ∥ 𝑥 ↔ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) | |
| 2 | 1 | rexbidv | ⊢ ( 𝑥 = 𝐴 → ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 ↔ ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 ) ) |
| 3 | breq2 | ⊢ ( 𝑥 = 𝐴 → ( 𝑝 ∥ 𝑥 ↔ 𝑝 ∥ 𝐴 ) ) | |
| 4 | 3 | rabbidv | ⊢ ( 𝑥 = 𝐴 → { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } = { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) |
| 5 | 4 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) = ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) |
| 6 | 5 | oveq2d | ⊢ ( 𝑥 = 𝐴 → ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) = ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) |
| 7 | 2 6 | ifbieq2d | ⊢ ( 𝑥 = 𝐴 → if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |
| 8 | df-mu | ⊢ μ = ( 𝑥 ∈ ℕ ↦ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝑥 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝑥 } ) ) ) ) | |
| 9 | c0ex | ⊢ 0 ∈ V | |
| 10 | ovex | ⊢ ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ∈ V | |
| 11 | 9 10 | ifex | ⊢ if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ∈ V |
| 12 | 7 8 11 | fvmpt | ⊢ ( 𝐴 ∈ ℕ → ( μ ‘ 𝐴 ) = if ( ∃ 𝑝 ∈ ℙ ( 𝑝 ↑ 2 ) ∥ 𝐴 , 0 , ( - 1 ↑ ( ♯ ‘ { 𝑝 ∈ ℙ ∣ 𝑝 ∥ 𝐴 } ) ) ) ) |