This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The value of the Möbius function at a non-squarefree number. (Contributed by Mario Carneiro, 21-Sep-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | muval1 | |- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> ( mmu ` A ) = 0 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | muval | |- ( A e. NN -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
|
| 2 | 1 | 3ad2ant1 | |- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> ( mmu ` A ) = if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) ) |
| 3 | exprmfct | |- ( P e. ( ZZ>= ` 2 ) -> E. p e. Prime p || P ) |
|
| 4 | 3 | 3ad2ant2 | |- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> E. p e. Prime p || P ) |
| 5 | prmnn | |- ( p e. Prime -> p e. NN ) |
|
| 6 | simpl2 | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> P e. ( ZZ>= ` 2 ) ) |
|
| 7 | eluz2b2 | |- ( P e. ( ZZ>= ` 2 ) <-> ( P e. NN /\ 1 < P ) ) |
|
| 8 | 6 7 | sylib | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( P e. NN /\ 1 < P ) ) |
| 9 | 8 | simpld | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> P e. NN ) |
| 10 | dvdssqlem | |- ( ( p e. NN /\ P e. NN ) -> ( p || P <-> ( p ^ 2 ) || ( P ^ 2 ) ) ) |
|
| 11 | 5 9 10 | syl2an2 | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( p || P <-> ( p ^ 2 ) || ( P ^ 2 ) ) ) |
| 12 | simpl3 | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( P ^ 2 ) || A ) |
|
| 13 | prmz | |- ( p e. Prime -> p e. ZZ ) |
|
| 14 | 13 | adantl | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> p e. ZZ ) |
| 15 | zsqcl | |- ( p e. ZZ -> ( p ^ 2 ) e. ZZ ) |
|
| 16 | 14 15 | syl | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( p ^ 2 ) e. ZZ ) |
| 17 | eluzelz | |- ( P e. ( ZZ>= ` 2 ) -> P e. ZZ ) |
|
| 18 | zsqcl | |- ( P e. ZZ -> ( P ^ 2 ) e. ZZ ) |
|
| 19 | 6 17 18 | 3syl | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( P ^ 2 ) e. ZZ ) |
| 20 | simpl1 | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> A e. NN ) |
|
| 21 | 20 | nnzd | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> A e. ZZ ) |
| 22 | dvdstr | |- ( ( ( p ^ 2 ) e. ZZ /\ ( P ^ 2 ) e. ZZ /\ A e. ZZ ) -> ( ( ( p ^ 2 ) || ( P ^ 2 ) /\ ( P ^ 2 ) || A ) -> ( p ^ 2 ) || A ) ) |
|
| 23 | 16 19 21 22 | syl3anc | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( ( ( p ^ 2 ) || ( P ^ 2 ) /\ ( P ^ 2 ) || A ) -> ( p ^ 2 ) || A ) ) |
| 24 | 12 23 | mpan2d | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( ( p ^ 2 ) || ( P ^ 2 ) -> ( p ^ 2 ) || A ) ) |
| 25 | 11 24 | sylbid | |- ( ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) /\ p e. Prime ) -> ( p || P -> ( p ^ 2 ) || A ) ) |
| 26 | 25 | reximdva | |- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> ( E. p e. Prime p || P -> E. p e. Prime ( p ^ 2 ) || A ) ) |
| 27 | 4 26 | mpd | |- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> E. p e. Prime ( p ^ 2 ) || A ) |
| 28 | 27 | iftrued | |- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> if ( E. p e. Prime ( p ^ 2 ) || A , 0 , ( -u 1 ^ ( # ` { p e. Prime | p || A } ) ) ) = 0 ) |
| 29 | 2 28 | eqtrd | |- ( ( A e. NN /\ P e. ( ZZ>= ` 2 ) /\ ( P ^ 2 ) || A ) -> ( mmu ` A ) = 0 ) |