This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of mulgt1 as of 29-Jun-2025. (Contributed by NM, 13-Feb-2005) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulgt1OLD | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 1 < 𝐴 ∧ 1 < 𝐵 ) ) → 1 < ( 𝐴 · 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 1 < 𝐴 ∧ 1 < 𝐵 ) → 1 < 𝐴 ) | |
| 2 | 1 | a1i | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 1 < 𝐴 ∧ 1 < 𝐵 ) → 1 < 𝐴 ) ) |
| 3 | 0lt1 | ⊢ 0 < 1 | |
| 4 | 0re | ⊢ 0 ∈ ℝ | |
| 5 | 1re | ⊢ 1 ∈ ℝ | |
| 6 | lttr | ⊢ ( ( 0 ∈ ℝ ∧ 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ) → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) | |
| 7 | 4 5 6 | mp3an12 | ⊢ ( 𝐴 ∈ ℝ → ( ( 0 < 1 ∧ 1 < 𝐴 ) → 0 < 𝐴 ) ) |
| 8 | 3 7 | mpani | ⊢ ( 𝐴 ∈ ℝ → ( 1 < 𝐴 → 0 < 𝐴 ) ) |
| 9 | 8 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1 < 𝐴 → 0 < 𝐴 ) ) |
| 10 | ltmul2 | ⊢ ( ( 1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 < 𝐵 ↔ ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) ) | |
| 11 | 10 | biimpd | ⊢ ( ( 1 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 < 𝐵 → ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) ) |
| 12 | 5 11 | mp3an1 | ⊢ ( ( 𝐵 ∈ ℝ ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → ( 1 < 𝐵 → ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) ) |
| 13 | 12 | exp32 | ⊢ ( 𝐵 ∈ ℝ → ( 𝐴 ∈ ℝ → ( 0 < 𝐴 → ( 1 < 𝐵 → ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) ) ) ) |
| 14 | 13 | impcom | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 0 < 𝐴 → ( 1 < 𝐵 → ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) ) ) |
| 15 | 9 14 | syld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 1 < 𝐴 → ( 1 < 𝐵 → ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) ) ) |
| 16 | 15 | impd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 1 < 𝐴 ∧ 1 < 𝐵 ) → ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ) ) |
| 17 | ax-1rid | ⊢ ( 𝐴 ∈ ℝ → ( 𝐴 · 1 ) = 𝐴 ) | |
| 18 | 17 | adantr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 1 ) = 𝐴 ) |
| 19 | 18 | breq1d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 · 1 ) < ( 𝐴 · 𝐵 ) ↔ 𝐴 < ( 𝐴 · 𝐵 ) ) ) |
| 20 | 16 19 | sylibd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 1 < 𝐴 ∧ 1 < 𝐵 ) → 𝐴 < ( 𝐴 · 𝐵 ) ) ) |
| 21 | 2 20 | jcad | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 1 < 𝐴 ∧ 1 < 𝐵 ) → ( 1 < 𝐴 ∧ 𝐴 < ( 𝐴 · 𝐵 ) ) ) ) |
| 22 | remulcl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 · 𝐵 ) ∈ ℝ ) | |
| 23 | lttr | ⊢ ( ( 1 ∈ ℝ ∧ 𝐴 ∈ ℝ ∧ ( 𝐴 · 𝐵 ) ∈ ℝ ) → ( ( 1 < 𝐴 ∧ 𝐴 < ( 𝐴 · 𝐵 ) ) → 1 < ( 𝐴 · 𝐵 ) ) ) | |
| 24 | 5 23 | mp3an1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 · 𝐵 ) ∈ ℝ ) → ( ( 1 < 𝐴 ∧ 𝐴 < ( 𝐴 · 𝐵 ) ) → 1 < ( 𝐴 · 𝐵 ) ) ) |
| 25 | 22 24 | syldan | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 1 < 𝐴 ∧ 𝐴 < ( 𝐴 · 𝐵 ) ) → 1 < ( 𝐴 · 𝐵 ) ) ) |
| 26 | 21 25 | syld | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 1 < 𝐴 ∧ 1 < 𝐵 ) → 1 < ( 𝐴 · 𝐵 ) ) ) |
| 27 | 26 | imp | ⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ( 1 < 𝐴 ∧ 1 < 𝐵 ) ) → 1 < ( 𝐴 · 𝐵 ) ) |