This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Obsolete version of mulgt1 as of 29-Jun-2025. (Contributed by NM, 13-Feb-2005) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | mulgt1OLD | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 1 < ( A x. B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | |- ( ( 1 < A /\ 1 < B ) -> 1 < A ) |
|
| 2 | 1 | a1i | |- ( ( A e. RR /\ B e. RR ) -> ( ( 1 < A /\ 1 < B ) -> 1 < A ) ) |
| 3 | 0lt1 | |- 0 < 1 |
|
| 4 | 0re | |- 0 e. RR |
|
| 5 | 1re | |- 1 e. RR |
|
| 6 | lttr | |- ( ( 0 e. RR /\ 1 e. RR /\ A e. RR ) -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
|
| 7 | 4 5 6 | mp3an12 | |- ( A e. RR -> ( ( 0 < 1 /\ 1 < A ) -> 0 < A ) ) |
| 8 | 3 7 | mpani | |- ( A e. RR -> ( 1 < A -> 0 < A ) ) |
| 9 | 8 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( 1 < A -> 0 < A ) ) |
| 10 | ltmul2 | |- ( ( 1 e. RR /\ B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( 1 < B <-> ( A x. 1 ) < ( A x. B ) ) ) |
|
| 11 | 10 | biimpd | |- ( ( 1 e. RR /\ B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( 1 < B -> ( A x. 1 ) < ( A x. B ) ) ) |
| 12 | 5 11 | mp3an1 | |- ( ( B e. RR /\ ( A e. RR /\ 0 < A ) ) -> ( 1 < B -> ( A x. 1 ) < ( A x. B ) ) ) |
| 13 | 12 | exp32 | |- ( B e. RR -> ( A e. RR -> ( 0 < A -> ( 1 < B -> ( A x. 1 ) < ( A x. B ) ) ) ) ) |
| 14 | 13 | impcom | |- ( ( A e. RR /\ B e. RR ) -> ( 0 < A -> ( 1 < B -> ( A x. 1 ) < ( A x. B ) ) ) ) |
| 15 | 9 14 | syld | |- ( ( A e. RR /\ B e. RR ) -> ( 1 < A -> ( 1 < B -> ( A x. 1 ) < ( A x. B ) ) ) ) |
| 16 | 15 | impd | |- ( ( A e. RR /\ B e. RR ) -> ( ( 1 < A /\ 1 < B ) -> ( A x. 1 ) < ( A x. B ) ) ) |
| 17 | ax-1rid | |- ( A e. RR -> ( A x. 1 ) = A ) |
|
| 18 | 17 | adantr | |- ( ( A e. RR /\ B e. RR ) -> ( A x. 1 ) = A ) |
| 19 | 18 | breq1d | |- ( ( A e. RR /\ B e. RR ) -> ( ( A x. 1 ) < ( A x. B ) <-> A < ( A x. B ) ) ) |
| 20 | 16 19 | sylibd | |- ( ( A e. RR /\ B e. RR ) -> ( ( 1 < A /\ 1 < B ) -> A < ( A x. B ) ) ) |
| 21 | 2 20 | jcad | |- ( ( A e. RR /\ B e. RR ) -> ( ( 1 < A /\ 1 < B ) -> ( 1 < A /\ A < ( A x. B ) ) ) ) |
| 22 | remulcl | |- ( ( A e. RR /\ B e. RR ) -> ( A x. B ) e. RR ) |
|
| 23 | lttr | |- ( ( 1 e. RR /\ A e. RR /\ ( A x. B ) e. RR ) -> ( ( 1 < A /\ A < ( A x. B ) ) -> 1 < ( A x. B ) ) ) |
|
| 24 | 5 23 | mp3an1 | |- ( ( A e. RR /\ ( A x. B ) e. RR ) -> ( ( 1 < A /\ A < ( A x. B ) ) -> 1 < ( A x. B ) ) ) |
| 25 | 22 24 | syldan | |- ( ( A e. RR /\ B e. RR ) -> ( ( 1 < A /\ A < ( A x. B ) ) -> 1 < ( A x. B ) ) ) |
| 26 | 21 25 | syld | |- ( ( A e. RR /\ B e. RR ) -> ( ( 1 < A /\ 1 < B ) -> 1 < ( A x. B ) ) ) |
| 27 | 26 | imp | |- ( ( ( A e. RR /\ B e. RR ) /\ ( 1 < A /\ 1 < B ) ) -> 1 < ( A x. B ) ) |