This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The powers of the element 1 give the unique ring homomorphism from ZZ to a ring. (Contributed by Mario Carneiro, 14-Jun-2015) (Revised by AV, 12-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgghm2.m | |- .x. = ( .g ` R ) |
|
| mulgghm2.f | |- F = ( n e. ZZ |-> ( n .x. .1. ) ) |
||
| mulgrhm.1 | |- .1. = ( 1r ` R ) |
||
| Assertion | mulgrhm2 | |- ( R e. Ring -> ( ZZring RingHom R ) = { F } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgghm2.m | |- .x. = ( .g ` R ) |
|
| 2 | mulgghm2.f | |- F = ( n e. ZZ |-> ( n .x. .1. ) ) |
|
| 3 | mulgrhm.1 | |- .1. = ( 1r ` R ) |
|
| 4 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 5 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 6 | 4 5 | rhmf | |- ( f e. ( ZZring RingHom R ) -> f : ZZ --> ( Base ` R ) ) |
| 7 | 6 | adantl | |- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> f : ZZ --> ( Base ` R ) ) |
| 8 | 7 | feqmptd | |- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> f = ( n e. ZZ |-> ( f ` n ) ) ) |
| 9 | rhmghm | |- ( f e. ( ZZring RingHom R ) -> f e. ( ZZring GrpHom R ) ) |
|
| 10 | 9 | ad2antlr | |- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> f e. ( ZZring GrpHom R ) ) |
| 11 | simpr | |- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> n e. ZZ ) |
|
| 12 | 1zzd | |- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> 1 e. ZZ ) |
|
| 13 | eqid | |- ( .g ` ZZring ) = ( .g ` ZZring ) |
|
| 14 | 4 13 1 | ghmmulg | |- ( ( f e. ( ZZring GrpHom R ) /\ n e. ZZ /\ 1 e. ZZ ) -> ( f ` ( n ( .g ` ZZring ) 1 ) ) = ( n .x. ( f ` 1 ) ) ) |
| 15 | 10 11 12 14 | syl3anc | |- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( f ` ( n ( .g ` ZZring ) 1 ) ) = ( n .x. ( f ` 1 ) ) ) |
| 16 | ax-1cn | |- 1 e. CC |
|
| 17 | cnfldmulg | |- ( ( n e. ZZ /\ 1 e. CC ) -> ( n ( .g ` CCfld ) 1 ) = ( n x. 1 ) ) |
|
| 18 | 16 17 | mpan2 | |- ( n e. ZZ -> ( n ( .g ` CCfld ) 1 ) = ( n x. 1 ) ) |
| 19 | 1z | |- 1 e. ZZ |
|
| 20 | 18 | adantr | |- ( ( n e. ZZ /\ 1 e. ZZ ) -> ( n ( .g ` CCfld ) 1 ) = ( n x. 1 ) ) |
| 21 | zringmulg | |- ( ( n e. ZZ /\ 1 e. ZZ ) -> ( n ( .g ` ZZring ) 1 ) = ( n x. 1 ) ) |
|
| 22 | 20 21 | eqtr4d | |- ( ( n e. ZZ /\ 1 e. ZZ ) -> ( n ( .g ` CCfld ) 1 ) = ( n ( .g ` ZZring ) 1 ) ) |
| 23 | 19 22 | mpan2 | |- ( n e. ZZ -> ( n ( .g ` CCfld ) 1 ) = ( n ( .g ` ZZring ) 1 ) ) |
| 24 | zcn | |- ( n e. ZZ -> n e. CC ) |
|
| 25 | 24 | mulridd | |- ( n e. ZZ -> ( n x. 1 ) = n ) |
| 26 | 18 23 25 | 3eqtr3d | |- ( n e. ZZ -> ( n ( .g ` ZZring ) 1 ) = n ) |
| 27 | 26 | adantl | |- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( n ( .g ` ZZring ) 1 ) = n ) |
| 28 | 27 | fveq2d | |- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( f ` ( n ( .g ` ZZring ) 1 ) ) = ( f ` n ) ) |
| 29 | zring1 | |- 1 = ( 1r ` ZZring ) |
|
| 30 | 29 3 | rhm1 | |- ( f e. ( ZZring RingHom R ) -> ( f ` 1 ) = .1. ) |
| 31 | 30 | ad2antlr | |- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( f ` 1 ) = .1. ) |
| 32 | 31 | oveq2d | |- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( n .x. ( f ` 1 ) ) = ( n .x. .1. ) ) |
| 33 | 15 28 32 | 3eqtr3d | |- ( ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) /\ n e. ZZ ) -> ( f ` n ) = ( n .x. .1. ) ) |
| 34 | 33 | mpteq2dva | |- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> ( n e. ZZ |-> ( f ` n ) ) = ( n e. ZZ |-> ( n .x. .1. ) ) ) |
| 35 | 8 34 | eqtrd | |- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> f = ( n e. ZZ |-> ( n .x. .1. ) ) ) |
| 36 | 35 2 | eqtr4di | |- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> f = F ) |
| 37 | velsn | |- ( f e. { F } <-> f = F ) |
|
| 38 | 36 37 | sylibr | |- ( ( R e. Ring /\ f e. ( ZZring RingHom R ) ) -> f e. { F } ) |
| 39 | 38 | ex | |- ( R e. Ring -> ( f e. ( ZZring RingHom R ) -> f e. { F } ) ) |
| 40 | 39 | ssrdv | |- ( R e. Ring -> ( ZZring RingHom R ) C_ { F } ) |
| 41 | 1 2 3 | mulgrhm | |- ( R e. Ring -> F e. ( ZZring RingHom R ) ) |
| 42 | 41 | snssd | |- ( R e. Ring -> { F } C_ ( ZZring RingHom R ) ) |
| 43 | 40 42 | eqssd | |- ( R e. Ring -> ( ZZring RingHom R ) = { F } ) |