This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equality of series under different addition operations which agree on an additively closed subset. (Contributed by Stefan O'Rear, 21-Mar-2015) (Revised by Mario Carneiro, 25-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | seqfeq3.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| seqfeq3.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | ||
| seqfeq3.cl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | ||
| seqfeq3.id | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 𝑄 𝑦 ) ) | ||
| Assertion | seqfeq3 | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) = seq 𝑀 ( 𝑄 , 𝐹 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | seqfeq3.m | ⊢ ( 𝜑 → 𝑀 ∈ ℤ ) | |
| 2 | seqfeq3.f | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) | |
| 3 | seqfeq3.cl | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 4 | seqfeq3.id | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 𝑄 𝑦 ) ) | |
| 5 | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) | |
| 6 | 1 5 | syl | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 7 | seqfn | ⊢ ( 𝑀 ∈ ℤ → seq 𝑀 ( 𝑄 , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) | |
| 8 | 1 7 | syl | ⊢ ( 𝜑 → seq 𝑀 ( 𝑄 , 𝐹 ) Fn ( ℤ≥ ‘ 𝑀 ) ) |
| 9 | simpr | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ 𝑀 ) ) → 𝑎 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 10 | simpll | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑎 ) ) → 𝜑 ) | |
| 11 | elfzuz | ⊢ ( 𝑥 ∈ ( 𝑀 ... 𝑎 ) → 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) | |
| 12 | 11 | adantl | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑎 ) ) → 𝑥 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
| 13 | 10 12 2 | syl2anc | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ 𝑥 ∈ ( 𝑀 ... 𝑎 ) ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝑆 ) |
| 14 | 3 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 15 | 4 | adantlr | ⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ 𝑀 ) ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) = ( 𝑥 𝑄 𝑦 ) ) |
| 16 | 9 13 14 15 | seqfeq4 | ⊢ ( ( 𝜑 ∧ 𝑎 ∈ ( ℤ≥ ‘ 𝑀 ) ) → ( seq 𝑀 ( + , 𝐹 ) ‘ 𝑎 ) = ( seq 𝑀 ( 𝑄 , 𝐹 ) ‘ 𝑎 ) ) |
| 17 | 6 8 16 | eqfnfvd | ⊢ ( 𝜑 → seq 𝑀 ( + , 𝐹 ) = seq 𝑀 ( 𝑄 , 𝐹 ) ) |