This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Closure of the group multiple (exponentiation) operation in a submagma. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnnsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnnsubcl.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnnsubcl.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| mulgnnsubcl.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | ||
| mulgnnsubcl.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | ||
| mulgnnsubcl.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | ||
| Assertion | mulgnnsubcl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnnsubcl.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnnsubcl.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnnsubcl.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | mulgnnsubcl.g | ⊢ ( 𝜑 → 𝐺 ∈ 𝑉 ) | |
| 5 | mulgnnsubcl.s | ⊢ ( 𝜑 → 𝑆 ⊆ 𝐵 ) | |
| 6 | mulgnnsubcl.c | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) | |
| 7 | simp2 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → 𝑁 ∈ ℕ ) | |
| 8 | 5 | 3ad2ant1 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → 𝑆 ⊆ 𝐵 ) |
| 9 | simp3 | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝑆 ) | |
| 10 | 8 9 | sseldd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → 𝑋 ∈ 𝐵 ) |
| 11 | eqid | ⊢ seq 1 ( + , ( ℕ × { 𝑋 } ) ) = seq 1 ( + , ( ℕ × { 𝑋 } ) ) | |
| 12 | 1 3 2 11 | mulgnn | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 13 | 7 10 12 | syl2anc | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) = ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ) |
| 14 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 15 | 7 14 | eleqtrdi | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → 𝑁 ∈ ( ℤ≥ ‘ 1 ) ) |
| 16 | elfznn | ⊢ ( 𝑥 ∈ ( 1 ... 𝑁 ) → 𝑥 ∈ ℕ ) | |
| 17 | fvconst2g | ⊢ ( ( 𝑋 ∈ 𝑆 ∧ 𝑥 ∈ ℕ ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) | |
| 18 | 9 16 17 | syl2an | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) = 𝑋 ) |
| 19 | simpl3 | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → 𝑋 ∈ 𝑆 ) | |
| 20 | 18 19 | eqeltrd | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) ∧ 𝑥 ∈ ( 1 ... 𝑁 ) ) → ( ( ℕ × { 𝑋 } ) ‘ 𝑥 ) ∈ 𝑆 ) |
| 21 | 6 | 3expb | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 22 | 21 | 3ad2antl1 | ⊢ ( ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) ∧ ( 𝑥 ∈ 𝑆 ∧ 𝑦 ∈ 𝑆 ) ) → ( 𝑥 + 𝑦 ) ∈ 𝑆 ) |
| 23 | 15 20 22 | seqcl | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → ( seq 1 ( + , ( ℕ × { 𝑋 } ) ) ‘ 𝑁 ) ∈ 𝑆 ) |
| 24 | 13 23 | eqeltrd | ⊢ ( ( 𝜑 ∧ 𝑁 ∈ ℕ ∧ 𝑋 ∈ 𝑆 ) → ( 𝑁 · 𝑋 ) ∈ 𝑆 ) |